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Abstract

Chaotic dynamical systems are often not uniform, and may exhibit properties
characteristic of intermittency, a qualitative phenomenon described by Pomeau
and Manneville in 1980. Intermittent maps may alternate between laminar and
chaotic phases, and this can quantifiably slow down their dynamical properties
such as mixing speeds. In this project, we introduce two common tools that
allow dynamical systems to be represented symbolically, in order to gain an
understanding of the phenomena behind intermittency. We then apply these
tools to the Manneville-Pomeau map, a non-uniformly expanding interval map
commonly used in the literature as an example of intermittency. In the process,
we point to some seminal papers and textbooks, in an effort to provide the
reader with an in-depth introduction to the basics of this area of ergodic theory.
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Chapter 1

Introduction and Preliminaries

In mathematics, dynamical systems are built in the image of physical processes that present some
form of time evolution. This can either be in discrete time (modelled, for example, as iterates
of a map) or continuous time (modelled perhaps using a smooth family of maps, or a system of
differential equations). The general idea tends to be that dynamical systems have no memory of
past states, so the state of a system at a given moment in time is enough to predict where the
system could go next. Sometimes, systems may have a random component, in which case they are
called stochastic. Otherwise, they are called deterministic. In this project we study discrete-time,
deterministic dynamical systems.

The word deterministic is misleading, because in nature, physical processes are so complex that
accurately measuring the state of a system at a given moment in time—including positions and
velocities of particles, the effects of electric and magnetic forces, gravity, and so on—is impossible.
The best we can hope to do is measure as much as possible, as accurately as we can. But after
a large enough amount of time, small imprecisions in the initial measurement have consequential
impacts on the accuracy of the predictions we have made about where the deterministic system
will go next: this is sometimes called the butterfly effect. In mathematics, we speak of chaos.

When modelling chaotic dynamical systems via straightforward, abstract examples, it is easy to
accidentally construct oversimplified models. Often, basic examples assume that these chaotic
systems behave uniformly—that is, that they are in a sense “equally chaotic all of the time”.
However, this is not always a fair assumption. Pomeau and Manneville [PM80] noted that for
certain well-chosen parameters, convective fluids could be observed to oscillate predictably most of
the time, but occasionally exhibit turbulent, difficult-to-predict phases. In their paper, they went
on to qualitatively describe this behaviour, calling it “intermittent”.

The aim of this project, then, is to provide the reader with a gentle introduction to intermittency in
dynamical systems from the point of view of ergodic theory, covering both the sorts of techniques
and constructions that are useful, as well as an application of these techniques to one specific
intermittent dynamical system.

We will spend the first chapter defining concepts and stating famous results that will assist us
later, and we will also look at Pomeau and Manneville’s paper in a bit more detail to determine
exactly what phenomenon we are hoping to observe. In the second chapter, we will learn about
two symbolic constructions that can be applied to an abstract dynamical system: Young towers
and countable Markov shifts. These constructions are there to help us visualise how the dynamical
system is acting on its state space, but they also give us technical information about the map if we
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construct them carefully. We will spend some time discussing under what conditions these symbolic
representations can be faithful to the original system. Finally, in the third chapter, we will apply
our knowledge to a canonical example of an intermittent discrete-time system acting on the unit
interval: the Liverani-Saussol-Vaienti map [LSV99], usually referred to as the “Manneville-Pomeau
map” for its intermittent properties. Though topologically similar to systems exhibiting uniform
chaos (we might say uniform expansion), this map has properties which stand in stark contrast
with its better-behaved cousins. It has been well-studied already, so we will be bringing together
known facts and, where possible, taking the time to prove them in more detail—and sometimes
with different techniques—than is usually offered in the literature.

The intended audience for this project is senior honours students with some background in analysis
and measure theory, though I hope that mathematicians on either side of this level of preparation
may find it useful—interpretation of the more technical concepts and derivations is offered where
possible, in order to avoid the work being too tied to a specific level. In writing this report, I
have drawn on my knowledge of some honours level modules taken at the University of St Andrews
which have provided useful context. To give an idea of the prerequisites, and also to point a keen
reader towards modules that may be of interest, here is a list of them.

• MT4508 Dynamical Systems (covers some interval maps, Lyapunov exponents, etc—though
we will not be too interested in fixed points, bifurcations, and stable/unstable manifolds in
this project);

• MT4528 Markov Chains and Processes (this module is good preparation for studying Markov
shifts, but this is not essential);

• MT5862 Measure Theory (most results are stated in a measure-theoretic setting in this
project, so it is useful to have seen measure theory beforehand, although we recap the basics
in section 1.1);

• MT5877 Ergodic Theory and Dynamical Systems (we go over most of the necessary concepts
from this module in the introduction, and the bulk of the project goes beyond what was
covered in MT5877, but it is definitely useful preparation).

We adopt standard mathematical notation throughout the project. If referring to a mathematical
object defined by a tuple e.g. (A,B,C), we may sometimes write “(A,C)”, “(B,A)”, “A”, etc.
depending on what is known and what is relevant. We use a vertical bar e.g. “A|B” to denote the
restriction of a function or collection A to a set B. For two functions f : X → X and g : X → Z, we
denote by fg the function given by fg(x) = fg(x)(x). For partitions A and B of a set, their join (the
smallest partition C such that every element of A and every element of B is partitioned by elements
of C) is denoted A ∨ B. In general when working with an underlying measure µ, statements hold
µ-almost everywhere by default, and this includes equality of sets (though we usually try to be

clear when this is the case). The symbol
◦
= will occasionally be used to denote almost-everywhere

equality for sets, partitions, and algebras.

Most plots in this project are straightforward in the sense that the reader shouldn’t have any trouble
replicating the figure using a standard graphing package (such as Desmos). However, in a few cases,
some additional steps have been carried out in the background in order to computationally generate
an image. In the interest of transparency, the Python scripts used to do this are available on GitHub
at tomcontileslie/manneville-pomeau. Wherever some computation has happened behind the
scenes, the margin will be marked with a calculator symbol P.
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Where one calculation or part of a proof requires some careful thought to be justified, I have marked

the margin with a Bourbaki dangerous bend sign
�

.

With all this in mind, let’s get started!

1.1 Measure theory

In the interest of having all of our definitions in one place, let’s quickly give an overview of measure
theory. Much more detailed introductions are readily available—for example, in [Bar95]. The
content of this section is adapted from MT5862.

Definition 1.1 (Measurable Space, Measure, Measure Space). Let X be a set and E be a set of
subsets of X. We call E a σ-algebra if it contains ∅ and X and is closed under complements and
countable unions. We refer to (X, E) as a measurable space.

Let µ : E → [0,∞] be a function that we think of as mapping a subset of X to its “size” or “mass”.
Then we call µ a measure if µ(∅) = 0 and if µ is countably additive on disjoint measurable sets
(i.e. if E1, E2, · · · ∈ E pairwise disjoint, then µ(∪nEn) =

∑
n µ(En)). If µ(X) = 1, then we call µ a

probability measure.

We then refer to (X, E , µ) as a measure space, or a probability space if µ is a probability measure.

Measure theory is the rigorous underpinning for the modern theory of integration, and is a robust
model since we are allowed to take countable combinations of things. Usually properties that hold
countably are referred to using a “σ”, one important example being that we call a measure σ-finite
if X can be partitioned into a countable union of sets with finite measure.

We can also use this theory to help us decide what subsets of X “matter”. Usually, if a set has
measure 0, it is not significant enough that its properties will have an effect on the overall set X
from the point of view of µ. We call such sets null sets.

If a property is true for every point in X except for those lying inside some null set with respect
to µ, we say that the property holds µ-almost everywhere or µ-a.e.; simply a.e. if the underlying
measure is clear. Note, however, that a.e. statements are highly dependent on which measure we
are using, and measures may have wildly different null sets (in the most extreme case, this means
they are mutually singular). We will need to be careful about this when claiming that a statement
is true almost everywhere.

In terms of measures, many weird and wonderful measures can be defined on a σ-algebra. We
will typically only use Lebesgue measure on Borel sets on an interval. In this case, X is taken to
be an interval [a, b] ⊆ R; the σ-algebra E equals the Borel algebra B(X) (the algebra generated
from all the open subsets of [a, b], or equivalently all open intervals); and the measure µ equals
Lebesgue measure λ, the measure which assigns to an interval (a, b) its natural notion of “width”,
λ((a, b)) = |b− a|.1

One other measure that we should be aware of, at least for the sake of counterexamples, is the
Dirac measure: for a measurable space (X, E) and x ∈ X, define ∀E ∈ E : δx(E) = χE(x) where
χE is the characteristic function on E. This is a probability measure.

1Defining λ on intervals then uniquely determines its value on all Borel sets.
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For the often-used Borel algebra B(X), we generate a σ-algebra based on all combinations of open
sets in X. In general, if we have a collection of sets D, the σ-algebra that it generates is σ(D) (the
smallest σ-algebra containing all the sets in D).

The work in later chapters often involves shifting our frame of reference to a subset of the space,
so we should also note that σ-algebras can easily be restricted:

Definition 1.2 (Restriction of a Measurable Space). Let (X, E) be a measurable space and A ∈ E .
Then the restriction of (X, E) to A is the measurable space (A, E|A) where

E|A = {A ∩ E : E ∈ E}.2

The presence of sets lying outside E—non-measurable sets—means that we must, at least in our
theoretical setup, be careful not to fall outside of the measurable σ-algebra at any point. Therefore,
in the literature, it usually goes without saying that the functions we study must be compatible
with the structures they map between.

Definition 1.3 (Measurable Function). Let (X, E) and (Y,F) be measurable spaces. A function
f : X → Y is said to be E-F-measurable or simply measurable if ∀F ∈ F : f−1F ∈ E .

If Y is a subset of R and F is not specified, then we call f measurable if it is E-B(Y )-measurable
(i.e. measurable with respect to the Borel algebra).

In practice, non-measurability is hardly ever an issue. In the Borel algebra, for example, one has
to try very hard to find a set that is not measurable (a common example is the Vitali set, but
its construction requires the axiom of choice). Certainly when our function is defined in standard
calculus terms, we may continue our work undisturbed by the definition above.

Our next result allows us to create new measures from pre-existing ones.

Proposition 1.4 (Standard Constructions of Measures).

1. (Linear Combinations of Measures). Let (X, E) be a measurable space with measures µ1, µ2, . . . .
Let a1, a2, · · · ≥ 0. Then

∑
n anµn given by ∀E ∈ E : (

∑
n anµn) (E) =

∑
n anµn(E) is a mea-

sure.

2. (Restriction of a Measure). Let (X, E , µ) be a measure space and let A ∈ E. Then µ|A given
by ∀E ∈ E : µ|A(E) = µ(E ∩A) is a measure.

3. (Pre-Composition of a Measure). Let (X, E , µ) be a measure space and let (Y,F) be a
measurable space. Let f : X → Y be a measurable function. Then µ ◦ f−1 given by
∀F ∈ F : (µ ◦ f−1)(F ) = µ(f−1F ) is a measure on (Y,F).3

These constructions will all prove useful in the next chapter.

Remark 1.5. In some definitions of a restriction, the measure µ|E is “normalised” by dividing
through by µ(E), giving a probability measure. This will not be hugely useful to us, since we
will typically be restricting Lebesgue measure—in which case normalising would mean that the
restricted measure of an interval does not equal its size. So we will opt to only normalise when
necessary, and do so explicitly. This will be done notationally with a bar, e.g. µ̄ = µ/µ(X) where
X is the set whose algebra µ is defined on.

2It is easy to check that E|A is a σ-algebra, and that the restriction can alternatively be expressed as E|A =
E ∩P(A).

3This pre-composition is sometimes written f∗µ.

5



Finally let us end this brief introduction with a reminder on Lebesgue integration.

Definition 1.6 (Lebesgue Integral). Let (X, E , µ) be a measure space. The Lebesgue integral with
respect to µ of a measurable function f : X → R is a notion built up from integrals of characteristic
functions. For any E ∈ E , we impose ˆ

χE dµ = µ(E),

and we then extend the notion so that the integral of a finite linear combination of measurable
characteristic functions is the linear combination of the integrals (these functions are called simple
functions). Finally, the Lebesgue integral of an arbitrary measurable function f is the supremum
over all simple functions less than f of the Lebesgue integrals of each of these simple functions.

The Lebesgue integral is implicitly a definite integral over the entire space X. This space can be
chosen to be e.g. a subset of Rn with Lebesgue measure, which allows us to recover a notion of
definite integration as seen in calculus. If we want to integrate over a set A smaller than X, we
write

´
A f dµ :=

´
f · χA dµ.

1.2 Ergodic theory and dynamical systems

The content of this section is mostly taken from [Tod20].

Definition 1.7 (Dynamical System). Let (X, E , µ) be a measure space and let f : X → X be a
measurable function.4 Then (X, E , µ, f) is referred to as a dynamical system. The set X is referred
to as the state space of the system. The (discrete) time evolution of the system is given by the
repeated application of f to a given point x ∈ X. The values taken by the iterates of f applied to
x give the orbit of x: O(x) = {x, f(x), f2(x), . . . }. We may also refer to the dynamical system as
(X, f), depending on what is known.

In some sources, dynamical systems are referred to as transformations.

We always use powers of a function to denote its composition with itself, rather than the value of
that function raised to a power. For k ≥ 0, we write:

fk(x) = f(f . . . f(f︸ ︷︷ ︸
k times

(x)) . . . ); f−k(x) = f−1(f−1 . . . f−1(f−1︸ ︷︷ ︸
k times

(x)) . . . ); f0(x) = x.

In dynamical systems, the hope is usually that the function f plays nicely with the properties of
the measure space it acts on. One fairly weak condition we might impose is that f in some sense
“disregards” the null sets of µ. Namely, f should map null sets to null sets.

Definition 1.8 (Nonsingularlity). A dynamical system (X, E , µ, f) is said to be nonsingular if:

∀E ∈ E : µ(E) > 0 =⇒ µ(f−1E) > 0.

(It is a common pattern that dynamical properties are phrased using preimages rather than images).

Stronger properties of compatibility between the measure space (X, E , µ) and the dynamics f are
also desirable. One strengthened version of the above condition is the standard starting point when
proving properties of a system. It states that the underlying measure, µ, assigns the same mass to
each set as it does to the set of all points whose f -images lie in that set. Formally, we have:

4We sometimes write f : X 	 since the map is from the space X back into itself.

6



Definition 1.9 (Invariance). Given a dynamical system f : X → X, we say f is µ-invariant if

∀E ∈ E : µ(f−1E) = µ(E).

In this case, the tuple (X, E , µ, f) is called a measure preserving transformation or mpt. If µ(X) = 1,
then we call it a probability preserving transformation or ppt.

Example 1.10 (Full Shift). To illustrate dynamical systems and invariance, and to arm ourselves
with an example whose generalisation will be useful in the next section, let us study the full shift,
with the notation of [Tod20].

Let N ≥ 2, and consider the set Σ+
N of all infinite sequences of non-negative integers < N :

Σ+
N = {x = (x0, x1, x2, . . . ) : 0 ≤ xi < N}.

It’s not immediately clear how to find reasonable subsets of Σ+
N that will give us a good σ-algebra,

but note that we might consider two sequences x and y to be “close together” if their first few
terms are the same. This is loosely what leads us to the following definition.

For any finite sequence w = (w0, w1, . . . , wn−1) with 0 ≤ wi < N , the cylinder set containing
w = (w0, w1, . . . , wn−1) contains all sequences starting with w.5 That is,

[w] = [w0, w1, . . . wn−1] = {(x0, x1, x2, . . . ) ∈ Σ+
N : xi = wi ∀i = 0, 1, . . . , n− 1}.

Cylinder sets exist for each n ≥ 1; we often call n the depth. For fixed n, the n-cylinder sets
partition Σ+

N ; e.g. at level 1, we have Σ+
N = [0] ∪ [1] ∪ · · · ∪ [N − 1] (because every sequence must

start with some number, so must lie in one of these cylinders). We place ourselves in the σ-algebra
generated by the cylinders for the rest of this example (usually we don’t need to think too hard
about the underlying algebra, but it’s good to know that there is one and that the sets we might
want to measure—the cylinder sets—are measurable).

We now define the “shift” dynamics σ on this space:6

σ : Σ+
N −→ Σ+

N

(x0, x1, x2, . . . ) 7−→ (x1, x2, x3, . . . ).

We can show that for any probability vector p = (p0, p1, . . . , pN−1) (i.e. the pi are non-negative
and sum to 1), a reasonable measure for Σ+

N could be to assign the following mass to cylinders:

µp([w0, w1, . . . , wn−1]) = pw0pw1 . . . pwn−1 .

This uniquely determines a measure called a Bernoulli measure that is shift-invariant (this was
proved in [Tod20]). We’ll do something similar for a generalised case in section 1.3.

5In general, the word cylinder is used in dynamical systems to denote a set whose elements “agree” for the first n
steps of a process. Here the process is the left shift; later in this project we will also talk about cylinders with respect
to other sorts of maps.

6This is different to the “σ” of “σ-algebra”, but little confusion is possible.
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Let’s return to the general setting. When we have invariance as defined in Definition 1.9, we are
able to make strong claims about the orbit of a “typical” starting point in the state space X
(and by “typical”, I mean we will be searching for results valid µ-almost everywhere). This is a
point where ergodic theory differs from other areas of the study of dynamical systems. To wit,
some mathematicians may be concerned with the rare (usually finite) set of points that have very
specific orbits under f (perhaps they are constant, or periodic, orbits); on the other hand, the
ergodic theorist is mostly interested in making statistical claims about what would likely happen
if we took the orbit O(x) of a point x picked at random in the space X (at random, that is, with
respect to µ). Poincaré’s Recurrence Theorem is an example of such a claim.

Theorem 1.11 (Poincaré’s Recurrence Theorem). Let (X, E , µ, f) be a ppt. Then for all E ∈ E,
we have that µ-almost every point x ∈ X gives an orbit O(x) which returns to E infinitely many
times (i.e. there is a sequence 0 ≤ n1 < n2 < . . . such that fnk(x) ∈ E for all k).

Remark 1.12. Ergodic theorems will often begin by assuming that we have a mpt or ppt. However,
if we are trying to apply theoretical results to a concrete example of a dynamical system (X, f),
we may be armed with a standard measure space—say, (X,B(X), λ)—which has a non-invariant
measure with respect to f . One of the initial challenges, then, is to find an invariant measure.
Invariant measures can usually be found (for example, if x ∈ X is a fixed point, i.e. f(x) = x,
then δx is invariant). However, the “almost everywhere” statements we get for these measures
using theorems such as Poincaré’s Recurrence Theorem may in general mean nothing to us, if the
invariant measures have drastically different null sets to our reference measure (usually λ). For
example, if a statement is valid for δx-almost every y ∈ X, it could in fact be valid only for y = x,
which tells us nothing much at all. So, the harder challenge is not only finding an invariant measure,
but finding a meaningful one. This is the subject of the first few sections of the third chapter, when
we are faced with a concrete map.

For the time being we may continue our illusion of everything being nice and already existing.
There are two further refinements of the notion of invariance which imply famous and meaningful
results that we should hope to harness when working with concrete maps.

Definition 1.13 (Ergodicity). Let (X, E , µ, f) be a ppt. We say µ is ergodic with respect to f if

∀E ∈ E : f−1E = E =⇒ µ(E) = 0 or 1.

This condition says that if a set is invariant under the dynamics, then it is either very large or very
small. Informally, we can interpret this as saying that f moves the space around a lot. Indeed, X
(the whole space) is always f -invariant; if we can find a smaller set A ⊆ X with measure between 0
and 1 that is also invariant, we would have found a part of the state space that acts independently
of the rest.

Provided we have ergodicity, we can apply the following powerful theorem.

Theorem 1.14 (Birkhoff’s Ergodic Theorem). Suppose (X, E , µ, f) is an ergodic ppt. Let ϕ ∈ L(µ)
(i.e. ϕ : X → R such that

´
|ϕ| dµ <∞). Then for µ-a.e. x ∈ X:

1

n

n−1∑
k=0

ϕ(fk(x)) −→
ˆ
ϕdµ

as n→∞.
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A common interpretation of this theorem is to say that “time averages converge to space averages”:
if we sample the value of ϕ at points along the orbit of x (time average), in the long run, we expect
to get a representative sample of ϕ across the whole space (space average)—all of this, of course,
with respect to the ergodic measure µ.

We spoke about ergodicity implying that f moves the space around a lot. A stronger description
still would be to say that f mixes points very well (so that applying f many times to points removes
any initial correlation they may have had). This is the motivation for the final definition we will
need.

Definition 1.15 (Mixing). Let (X, E , µ, f) be a ppt. We say that the system is (strongly) mixing
if:

∀A,B ∈ E : µ(f−nA ∩B) −→ µ(A)µ(B)

as n→∞. We say that the system is weakly mixing if:

∀A,B ∈ E :
1

n

n−1∑
k=0

∣∣µ(f−nA ∩B)− µ(A)µ(B)
∣∣ −→ 0

as n→∞.

We have progressively increased the restrictiveness of the ergodic properties in this section, so it
would only take a small amount of additional work to prove the following chain of implications:

Strong mixing
⇓

Weak mixing
⇓

Ergodicity
⇓

Invariance
⇓

Nonsingularity

1.3 Countable Markov shifts

The shift map we saw in the previous section generalises nicely to types of systems reminiscent
of Markov chains. A (discrete-time) Markov chain, broadly speaking, is a sequence of random
variables {X0, X1, X2, . . . } all taking values in a certain set S, such that the conditional probability
distribution of Xi+1 given Xi is the same as given Xi, Xi−1, Xi−2, . . . , X0. In other words, the
system changes state at every timestep i based on a probability distribution informed only by its
state at the previous timestep: the system has no memory of its past states except its most recent
one.

We often represent Markov chains using a transition graph which displays the probability of tran-
sition from a state s to another state t, for all s, t ∈ S.

9
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Figure 1.1: A transition graph.

In the graph above, if we impose X0 = s2, we can calculate that the probability of seeing the
sequence (X0, X1, X2, X3, X4) = (s2, s1, s2, s0, s0) is the product of the probabilities along the path
s2s1s2s0s0, i.e.

1

2
· 1 · 1

2
· 1

6
=

1

24
.

To study Markov shifts, we change our perspective from looking at probabilistic transitions on a
graph to looking at infinite walks on this same graph.

Each possible event for the above Markov chain is an infinite sequence of values taken by the Markov
variables: (X0, X1, X2, . . . ) = (x0, x1, x2, . . . ) where the transition from each xi to xi+1 happened
with a certain non-zero probability. Initially, we don’t mind what the probability of each transition
was: we are simply interested in characterising the set of all sequences that could have occurred.

The following definitions are taken from Sarig’s introduction in [Sar99].

Definition 1.16 (Topological Transition Matrix). Let S = {s0, s1, . . . } be a finite or countable
set of states, and let A = (aij) be an S × S matrix of zeroes and ones. (Interpreting A using the
context above, the link is that a transition from state i to state j is possible if aij = 1). A is called
a topological transition matrix if transition from and to every state is possible:

∀s ∈ S : ∃i, j ∈ S : asi = ajs = 1.

The matrix A determines which states can come directly before other states, and is equal to the
adjacency matrix of the (unweighted) transition graph we saw above. We say that A is topological
because rather than giving the exact transition probabilities, it only has aij ∈ {0, 1}, simply
determining if a transition from i to j has non-zero probability, regardless of the exact probability
of transition. Two systems with the same possible transitions, but different probabilities, will still
be topologically equivalent.

We can now construct the set of all possible infinite paths:

Definition 1.17 (Countable Markov Shift). For a topological transition matrix A, we define the
associated shift space to be:

Σ+
A = {x = (x0, x1, x2, . . . ) ∈ SN0 : axixi+1 = 1∀i ≥ 0}.

10



We apply the following one-sided shift or left shift to the space:

σ : Σ+
A −→ Σ+

A

(x0, x1, x2, . . . ) 7−→ (x1, x2, x3, . . . ).

The dynamical system (Σ+
A, σ) is then referred to as the (one-sided) countable Markov shift (or

CMS ) generated by A.7

Applying the shift map to an infinite path in Σ+
A returns the same path, but starting one step later.

We will usually wish to endow this CMS with the following metric: pick a θ ∈ (0, 1), then for any
x = (x0, x1, x2, . . . ),y = (y0, y1, y2, . . . ) ∈ Σ+

A, define

dθ(x,y) = θmin{i: xi 6=yi}.

One can show that the open sets in Σ+
A are precisely the cylinder sets we are about to define.

Definition 1.18. For a finite word w = (w0, w1, . . . , wn−1) over the alphabet S, the cylinder set
containing w is

[w] = [w0, w1, . . . , wn−1] = {(x0, x1, x2, . . . ) ∈ Σ+
A : xi = wi ∀i = 0, 1, . . . , n− 1}.

If a cylinder [w] is empty for some word w, then that means one of the state transitions in w is
impossible. In this case we say that w is not admissible. Otherwise, we say w is an admissible
word.

The Borel σ-algebra generated by the open sets in Σ+
A will be denoted B and (Σ+

A,B) will be our
measurable space of choice. We now want to characterise the σ-invariant measures on (Σ+

A,B),
and will exhibit a class of these measures below. The direction taken for the rest of this section
is inspired by [Aar97, Chapter 4], but I have combined the statements with some notions from
Markov chains to reach the invariant measures faster while also giving more detailed proofs.

Definition 1.19 (Stochastic Matrix). Let A = (aij) be a topological transition matrix on the set
of states S. Let P = (pij) be a matrix with the same dimensions as A, satisfying:

1. pij = 0 ⇐⇒ aij = 0;

2. For each row i,
∑

j pij = 1.

Then P is called a stochastic matrix for A. As a transition matrix, it gives a Markov chain with
the same graph as the one associated with A.

In certain cases, the Markov chain associated with P will converge in probability to a stable
distribution, as defined below.

Definition 1.20 (Stationary Probability Vector). A (row) vector π = (πi)i∈S is called a stationary
probability vector for the stochastic matrix P if:

1.
∑

i πi = 1;

7Every point in Σ+
A can also be seen as a point in the full shift space Σ+

|S| from example 1.10, leading some sources
to refer to CMS as subshifts.

11



2. πP = π.

Given a stochastic matrix and its associated stationary probability vector (if it exists), we can now
define a shift-invariant measure.

Definition 1.21 (Markov Measure). Let (Σ+
A, σ) be a CMS. Let P = (pij) be a stochastic matrix

for A, and suppose P has a stationary probability vector π = (πi). We define a measure µP,π on
the cylinder sets as follows:

µP,π([w0, w1, . . . , wn−1]) = πw0pw0w1pw1w2 . . . pwn−2wn−1 .

Measures constructed in this way are referred to as Markov measures. Note that they are a gener-
alisation of the Bernoulli measures we briefly mentioned in example 1.10.

The measure µP,π is indeed a probability measure on the algebra of all finite unions of cylinders.
Once we’ve shown this, and once we’ve convinced ourselves that the set of cylinders generates B,
the fact that it extends to a unique measure on (Σ+

A,B) follows from Carathéodory’s Extension
Theorem and Hahn’s Extension Theorem (for more information see, for example, [Bar95, Chapter
9]).

We need to show that our measure is well-defined and that it gives full measure to the whole space.
Suppose S = {s0, s1, . . . }.

• Take any cylinder [w0, w1, . . . , wn−1]. To show well-definedness it is sufficient to show that
the measure is appropriately additive on the natural partition of this cylinder:

µP,π([w0, w1, . . . , wn−1, s0] ∪ [w0, w1, . . . , wn−1, s1] ∪ . . . )
= µP,π([w0, w1, . . . , wn−1])

= πw0pw0w1 . . . pwn−2wn−1

= πw0pw0w1 . . . pwn−2wn−1(pwn−1s0 + pwn−1s1 + . . . )

= µP,π([w0, w1, . . . , wn−1, s0]) + µP,π([w0, w1, . . . , wn−1, s1]) + . . . ,

summing to 1 along row wn−1 since P is stochastic. So µP,π does indeed break down appro-
priately into sub-cylinders.

• To check µP,π is a probability measure, consider:

µP,π(Σ+
A) = µP,π([s0] ∪ [s1] ∪ . . . )

= µP,π([s0]) + µP,π([s1]) + . . .

=
∑
i

πi

= 1,

as required.

So far we have not used the fact that πi is stationary (in fact we can define Markov measures
without the stationary property on the probability vector π, in which case π is called the initial
distribution). However in this case, because of the stationary property, µP,π is invariant under the
left shift.

12



Proposition 1.22. Let (Σ+
A, σ) be a CMS. Let P be a stochastic matrix for A with a stationary

probability vector π. Then µP,π is σ-invariant.

Proof. Since the cylinders generate B, it is sufficient to show µP,π(σ−1[w]) = µP,π([w]) for any
cylinder [w] = [w0, w1, . . . , wn−1]. We have

µP,π(σ−1[w]) = µP,π([s0, w0, w1, . . . , wn−1] ∪ [s1, w0, w1, . . . , wn−1] ∪ . . . )

=
∑
i

µP,π([si, w0, w1, . . . , wn−1])

=
∑
i

πsipsiw0pw0w1 . . . pwn−2wn−1

=

(∑
i

πsipsiw0

)
pw0w1 . . . pwn−2wn−1

= πw0pw0w1 . . . pwn−1wn−1

= µP,π([w]).

This proposition shows that there are potentially many measures which are invariant under a
countable Markov shift; indeed, the Perron-Frobenius theorem tells us that there exists a (unique)
stationary probability vector for every finite, topologically transitive stochastic matrix P (see, for
example, [SC97]). Furthermore, Markov measures are not necessarily the only types of measures
that exist on a CMS.

Typically, amongst all these invariant measures, only a few will be of interest to us: recall the need
for an invariant measure to be “meaningful”, as in Remark 1.12. In the next section we return
to the general case and settle on a notion of “meaningful” which will allow us to single out the
important measures.

1.4 Absolute continuity

Suppose we have a dynamical system (X, E , µ, f). We noted in Remark 1.12 that in order to apply
ergodic theorems, we need an invariant (ideally ergodic) measure. However, amongst many possible
invariant measures, we need to find one whose “almost everywhere” statements translate back into
our frame of reference, with our measure µ. One way of doing this is to impose that the null sets
of µ are also null sets for the invariant measure.

Definition 1.23 (Absolute Continuity). Given two measures µ, ν on a measurable space (X, E),
we say that ν is absolutely continuous (or a.c.) with respect to µ, and write ν � µ, if

∀E ∈ E : ν(E) > 0 =⇒ µ(E) > 0.

Searching for a.c. invariant measures can be difficult, but finding one ensures that the conclusions
we can draw are meaningful with respect to the reference measure µ.

In the case of interval maps, µ will often be taken to be Lebesgue measure λ, and any corresponding
probability measure ν will be called an absolutely continuous invariant probability measure, or acip.

An a.c. measure can be seen as a distortion of the original measure, as this next theorem (mentioned
in most ergodic theory textbooks, for example [BG97, Chapter 2]) shows.

13



Theorem 1.24 (Radon-Nikodym [Nik30]). Suppose µ, ν are two finite8 measures on (X, E) such
that ν � µ. Then there exists an L1(µ) density function ψ : X → [0,∞) such that

∀E ∈ E : ν(E) =

ˆ
E
ψ dµ.

This function is called the Radon-Nikodym derivative of ν with respect to µ and is sometimes
denoted

ψ =
dν

dµ
.

Conversely, a measure ν can be defined via its Radon-Nikodym derivative ψ with respect to µ, and
in some sources this is written as ν := ψµ, or dν := ψ dµ.

This derivative then behaves exactly as we would expect when it comes to linear combinations of
measures. Furthermore, integrals with respect to ν can be converted into integrals with respect to
the reference measure µ using a sort of measure-theoretic chain rule:ˆ

ϕdν =

ˆ
ϕ · dν

dµ
dµ. (1.1)

There are other ways to single out particular types of meaningful invariant measures which we
will not look at here. One modern field of study called thermodynamic formalism involves the
hunt for, and description of, invariant measures that satisfy some relationship with a function
φ : X → R called the potential. These meaningful measures include Gibbs measures, conformal
measures and equilibrium states (all invariant measures satisfying some condition involving φ). I
refer the interested reader to the introduction of [Sar99], which defines the key concepts and applies
them to countable Markov shifts (which we defined in the previous section).

1.5 Push-forwards and the transfer operator

A dynamical system moves one timestep ahead by applying a function f to X. We can define similar
“one-timestep” functions that can be applied to ergodic objects other than the state space—namely,
measures and Radon-Nikodym derivatives.

Definition 1.25 (Push-Forward Measure). Let (X, E , µ, f) be a dynamical system. Then the
push-forward measure of the system is the pre-composition (see Proposition 1.4)

f∗µ := µ ◦ f−1,

i.e. f∗µ(E) = µ(f−1E).

Just like we can iterate f on X, we can iterate f∗ on the space of all measures on X. Clearly
(f∗)

nµ = (fn)∗µ. One other nice property of push-forwards is that for ϕ ∈ L(µ),

ˆ
ϕd(f∗µ) =

ˆ
ϕ ◦ f dµ. (1.2)

This notion of moving objects through time is also available in a functional-theoretic version. The
rest of this section is from [BG97, Chapter 4] and [Aar97, Chapter 1].

8This can be loosened to σ-finite, but we lose the L1 result, and we won’t need a statement stronger than finite
measures here.
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Definition 1.26 (Transfer Operator). Let (X, E , µ, f) be a nonsingular dynamical system on a finite
measure space. The transfer operator, or Frobenius-Perron operator, or dual operator associated
with f is the operator Lf : L1(µ) → L1(µ) which maps ϕ ∈ L1(µ) to the unique (up to µ-a.e.
equality)9 function Lfϕ such that

∀ψ ∈ L∞(µ) :

ˆ
Lfϕ · ψ dµ =

ˆ
ϕ · ψ ◦ f dµ.

(We will use L for transfer operators in this project, and use Lp or Lp instead to denote classical
function spaces.) Sources will use wildly different notations for the transfer operator, and these
may include Pf or f̂ . If it is clear what the function f is, we can just write L. Note that there
is an implicit dependence on the measure µ, which is in this case taken to be a reference measure
such as Lebesgue (there is no invariance assumption on µ).

The idea is to think of the function ϕ we are applying the operator to as a probability density
function of some random variable Y . Then, Lfϕ can be thought of as the probability density
function of Y ◦ f .

The transfer operator is a fashionable concept in dynamical systems, as it allows us to convert
problems in ergodic theory into problems in functional analysis, where many theorems (particularly
relating to eigenvalues) are available. The standard modern reference for a textbook exploring
transfer operator techniques in dynamical systems is Viviane Baladi’s book [Bal00].

Proposition 1.27 (Properties of the Transfer Operator). Let (X, E , µ, f) be a nonsingular dynam-
ical system on a finite measure space and let Lf be the transfer operator of f . Then the operator
has the following properties.

1. (Linearity). Lf is linear, i.e. Lf (a1ϕ1 + a2ϕ2) = a1Lf (ϕ1) + a2Lf (ϕ2).

2. (Composition). Let g be another nonsingular transformation of (X, E , µ). Then Lg◦f =
Lg ◦ Lf . Namely, Lfn = (Lf )n.

3. (Invariance). For ϕ ∈ L1(µ), we have Lfϕ = ϕ if and only if the measure ν � µ given by
dν = ϕdµ is f -invariant.

4. (Relationship with Push-Forwards). If ν � µ has Radon-Nikodym derivative ϕ, then the
Radon-Nikodym derivative of f∗ν is Lfϕ.

These properties are all from [BG97] where their proofs are also available, except for the final point
which follows from footnote 9.

It is possible to phrase ergodic properties of dynamical systems in terms of the transfer operator,
but we will not do this here. Note, though, that finding an absolutely continuous invariant measure
is equivalent to finding a fixed point of the transfer operator.

Later we will need to apply the transfer operator to a function on the interval. There happens to
be a direct formula for the transfer operator associated with a dynamical system on the interval,
provided this system is nice enough. This is proved in [BG97, Section 4.3].

9Note that existence and uniqueness of a function Lfϕ satisfying this equation is not immediately obvious, but
justification is given in [Aar97]. It uses the following explicit construction: let ϕ be the R-N derivative for νϕ := ϕµ.
Then Lfϕ is the R-N derivative of f∗νϕ.
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Proposition 1.28 (Pointwise Definition of the Transfer Operator). Let (I,B(I), λ) be the standard
measure space on an interval I = [a, b] ⊆ R. Let f : I 	 be a piecewise monotonic transformation
on I, i.e. there exists an r ≥ 1 such that I can be partitioned into a finite number of intervals on
which f is Cr and |f ′| > 0. Then for all ϕ ∈ L1:

Lfϕ(x) =
∑

z∈f−1({x})

ϕ(z)

|f ′(z)|
.

This final characterisation is the main one we will use in Chapter 3.

1.6 Intermittency

With some dynamical systems background under our belt, we can now define the phenomenon we
are seeking to observe in this project. The choice of the term “intermittency” goes back to Pomeau
and Manneville’s paper [PM80] mentioned in the introduction, although the phenomenon had been
observed in many physical experiments before then. The setting of Pomeau and Manneville’s
paper is parametrised families of dynamical systems, and their claim is that “intermittency” can
be observed near the transition from a stable parameter to a turbulent one (these are often referred
to as bifurcations). Pomeau and Manneville distinguish between three types of bifurcations where
intermittency can be observed, and call these type 1, type 2, and type 3. However, the motion
observed at the bifurcation seems to have the same kind of behaviour regardless of the type.

The intuition for intermittency appearing at bifurcations seems to be due to phase transitions. On
one side of the critical parameter, motion is smooth and predictable, while on the other, motion is
chaotic and unpredictable. Only fine choices of parameters allow the system to be balanced enough
that a bit of both can appear.

Rather than looking for bifurcations where intermittency can be found, the aim of this project is to
study the intermittency itself, in a qualitative sense. For reference, let’s introduce two quotes from
[PM80] where the intermittency they observe is described. The examples giving these descriptions
are rather unrelated to the direction of this project, but the motion we uncover will nonetheless be
similar.

This first quote is an observation on convective fluids, which are continuous-time dynamical sys-
tems.10

“[At the bifurcation,] the fluctuations remain apparently periodic during long time
intervals (which we shall call “laminar phases”) but this regular behavior seems to be
randomly and abruptly disrupted by a “burst” on the time record. This “burst” has a
finite duration, it stops and a new laminar phase starts and so on.” [PM80]

This second quote is from a discrete dynamical system on the torus designed to have a tangency
at the origin, not unlike the map we will study in the third chapter.

10It is possible to turn a continuous-time system into a discrete-time one, and in fact this is done in the paper for
type 1 intermittency. For the Lorenz model in 3D, the authors consider a map which sends a point x in the plane
x = 0 to the point of next crossing of O(x) with the plane x = 0.
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“Once an iterate falls near z = 0, it enters a laminar phase and a large number of further
iterations are needed to expell it towards the “bursting region” (where correlations are
broken)” [PM80]

These quotes lead us to a general definition of intermittency which might look something like:

Definition 1.29 (Intermittency). A dynamical system is called intermittent if its orbits alternate
unpredictably between long, laminar, predictable phases and chaotic, unpredictable phases.

We will mostly be looking at interval maps (from the point of view of ergodic theory) in this
project, and the literature in this area tends to refer to “intermittency” when a map is non-
uniformly expanding, specifically in the case of there being a neutral fixed point. We will clarify
what this means, and how it relates to intermittency, in the third chapter. However, we note in
the conclusion of this project that interval maps can be intermittent outside of this context too.

For the time being, our goal should be to build up some tools that will allow us to study examples
in such a way that we will able to see, and distinguish between, the laminar and chaotic phases.
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Chapter 2

Visualising Dynamical Systems

Consider a dynamical system f : X 	. In general, X could be a complicated set that we wish
to simplify in some way to make the dynamics easier to understand. This is often done in the
literature, regardless of whether we are expecting f to have intermittent properties or not.

However, in the case of intermittent maps, this simplification task is of particular importance. It
will, for example, allow us to encode systems in a way which will make their laminar and chaotic
phases appear. There are several ways of doing this, and we will first study the “tower” description
of a dynamical system before looking at how we may encode one as a Markov shift.

2.1 Young towers

2.1.1 Some motivation

In classical ergodic theory research going back as early as the 1940s, there appears to have been a
desire to describe dynamical systems (X, f) through some form of upward motion followed by an
eventual return to the ground.

This usually means partitioning the state space into a finite or countable number of “floors”, each
one possibly subdivided into different sections, in such a way that applying f moves from one floor
to the next one up. This has led to multiple different sorts of dynamical “towers” earning a name,
each with their own applications and assumptions.

A Rokhlin tower partitions all but ε of the space X into n floors, each one an iterate of a base set
B.1 This is a somewhat low-resolution representation, as some points in B might map back to B
in exactly n iterates, while others may wander around in the remaining ε for many more iterates
before returning. There is therefore a need to describe the space X completely, rather than up to
an arbitrarily small set, if we want to make any inferences about the long-term behaviour of orbits.

1The existence of such a B for any n and any ε > 0 is implied (provided we have an aperiodic ppt) by a theorem
of Rokhlin in 1948. This is discussed in [Wei89].
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Figure 2.1: A Rokhlin tower. Movement up the tower is “laminar” in a sense, but we know too
little about the remaining part of the space with measure ε.

To get more information out of the Rokhlin tower, we could simply add more levels on the top in
an effort to cover the remaining ε. Progressively, as points in B see their orbits return to B after
n, n + 1, . . . iterations of f , the size of each additional level will whittle down until we eventually
cover all of X. This is a special case of a Kakutani skyscraper (see [Pet83, Section 1.3]). It certainly
covers all of X, but doesn’t really provide an interesting framework for the study of intermittent
systems; we require something more specialised.

Returning to our Rokhlin tower, then, we know that the different “return times” of points in B are
causing a mess at the top of the tower. One thing we could try is to further subdivide the base
set B in such a way that if two points lie in the same subdivision, they take the same number of
applications of f to return to B. Say this number is some integer r; then we will be able to extend
the subdivision containing the two points into r levels, the top of which will then map back into B
under f . This will be the intuition necessary for the tower model I am seeking to introduce.

First, let’s formalise this notion of return time that we will use to partition the base set.

Definition 2.1 (Return Time). Let f : X 	 for some measure space (X, E , µ). Let B ∈ E . The
return time function of B is

RB : B −→ Z+

x 7−→ min{k ≥ 1 : fk(x) ∈ B}.

If the orbit of some x ∈ B never re-enters B, we set RB(x) =∞.

In general, there is no reason for the orbit of x ∈ B to ever re-enter B. However, if the system
(X, E , µ, f) satisfies the conditions of Poincaré’s Recurrence Theorem (Theorem 1.11) and µ(B) > 0,
then in fact RB is finite µ-a.e. By this point, notice that we have freed ourselves from the setting
of the Rokhlin tower, and can take B to be whatever positive-measure set we want (rather than
one whose iterates cover all but ε of the space).

When the return time is finite µ-a.e., we can break down our base set B into subsets on which
every point has the same return time. In the most complete case, this could give a partition
B1, B2, · · · ⊆ B, where RB|Bi is the constant function i. However, in some cases, not every return
time is possible, so in general we refer to Ri as the constant integer return time on the ith partition
set.
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2.1.2 Defining a Young tower

We are now ready to define a Young tower, which has some technical conditions attached that
immediately prove a number of mixing and recurrence properties. This definition is from Lai-Sang
Young’s paper [You99], although some additional interpretation is available in [Bal00, Section 3.5].
The initial definition is abstract, but we will soon also see how to construct a Young tower from a
pre-existing system.

Definition 2.2 (Young Tower). Let (∆0,B|∆0 ,m) be a finite measure space (the idea is that ∆0

will be our base set for a larger space ∆).2 Partition the base set ∆0 into {∆0,i}i=1,2,... (these will
be our sets of constant return time). Let R : ∆0 → Z+ be a return time function which is constant
on each ∆0,i, and let Ri denote the value of R on ∆0,i. Finally, for each i ≥ 1, let ζi : ∆0,i → ∆0

be a bijection. This is all we are free to choose, and the rest of this definition introduces notation
and conditions on these parameters.

First, this setup uniquely determines a larger set ∆ which we call the tower, and which forms the
state space. Each element of ∆ is a pair (z, n), where z denotes base location and n represents
height (or “floor number”):

∆ = {(z, n) : z ∈ ∆0; n ∈ Z≥0; n < R(z)}.

The setup also uniquely determines the tower map F : ∆ 	. This sends everything upwards, except
at the top of the tower, where it maps back down into the base ∆0:

F (z, n) =

{
� (z, n+ 1) n+ 1 < R(z)

(ζi(z), 0) n+ 1 = R(z) (where i is such that z ∈ ∆0,i).

To ensure ∆ actually contains its base set ∆0, we abuse notation and imagine ∆0 to formally be a set
of pairs, rather than a set of points, when this is needed: ∆0 = {z : z ∈ ∆0} = {(z, 0) : z ∈ ∆0} ⊆ ∆.

We then also define ∆l to be the lth floor of the tower ∆, and define ∆l,i to be the part of floor
number l lying above the ith base partition set:

∆l = ∆ ∩ {n = l}; ∆l,i = ∆l ∩ {z ∈ X0,i}.

Each ∆l,i is one level of a column of the tower, with base ∆0,i. In column i, the highest level is
∆Ri−1,i. The collection Z := {∆l,i : i ≥ 1, 0 ≤ l < Ri} partitions ∆.

The induced system is the dynamical system FR : ∆0 	 given by FR(z) = FR(z)(z, 0) = ζi(z)
(where i is such that z ∈ ∆0,i).

3

The separation time of two points in the base ∆0 says how long it takes for their orbits to move
apart:

∀x, y ∈ ∆0 : s(x, y) = min{n ≥ 0 : (FR)n(x), (FR)n(y) lie in separate ∆0,i}.

If we need to extend separation time to the whole tower ∆, we let s(x, y) equal 0 unless x, y lie in
the same ∆l,i, in which case s(x, y) := s(x′, y′) where x′, y′ are the corresponding points in ∆0,i.

2Usually the base set ∆0 will be a set of significance in the system we are trying to represent as a tower, and m
will be something like Lebesgue measure.

3We will tend to use FR rather than the individual ζi bijections, since FR is defined on the entire base set ∆0.
However, think of FR on ∆0 as having as many branches ζi as there are ∆0,i in the base set.

20



The hitting time of a point (z, l) ∈ ∆ is the smallest number of iterations of F needed to enter the
base ∆0:

R̂(z, l) = min{n ≥ 0 : Fn(z, l) ∈ ∆0} =

{
0 l = 0

R(z)− l 0 < l < R(z).

We then define the size of the tails τn to be the measure of all points more than n iterates away
from the base:

τn = m({x ∈ ∆ : R̂(x) > n}).

Finally, the measure space for the full tower (∆,B,m) is obtained by translating the measurable sets
in B|∆0 up the tower via F , and preserving measure as follows: if A ⊆ ∆l,i, then m(A) = m(F−lA).4

We call the system defined above a Young Tower if the following conditions are satisfied:

Y1. (Measurability). All the sets mentioned are B-measurable, as are the ζi, as well as F and its
inverses.

Y2. (Strong Generation). Z is a strong generator for B.

Y3. (Aperiodicity). gcd{Ri : i = 1, 2, . . . } = 1.

Y4. (Bounded Distortion). For each i, ζi : ∆0,i → ∆0 and its inverse are nonsingular with respect
to m. Also, ∃C > 0 and β ∈ (0, 1) such that:

∀i ≥ 1 : ∀x, y ∈ ∆0,i :

∣∣∣∣JFR(x)

JFR(y)
− 1

∣∣∣∣ ≤ Cβs(FRx,FRy)

where J denotes the Jacobian5 (which exists and is positive by nonsingularity).

Y5. (Return Time Integral).
´
Rdm <∞.

I should note that the notation is taken to be identical to [You99], but the definition has been
re-ordered in the hopes of making it easier to understand and to check. The bijections ζi have also
been added; their action on ∆ is simply referred to as FR in Young’s paper.

This definition is a bit of a mouthful, so let’s take some time to pick it apart and discuss how it
can actually be useful to us.

Most of the definition is there to define notation and terms that are useful when talking about how
the tower map acts on the tower ∆. When actually proving that something is a Young tower, we
only need to show that it satisfies the conditions of the first paragraph, plus conditions Y1–Y5.

In practice, the idea will be to construct a Young tower from a system that we already have, and
that we wish to study—say, (X, E , µ, f). Then, we can let the base ∆0 equal the “base set” B of
our system, and we can carefully choose R and ζi in the definition in such a way that we obtain a
Young tower ∆. Note that this tower will not be equal to X, despite it being a representation of
X. Instead, ∆ will contain all the points in B, and then copies of B further up the tower in the
form (b, n) (for b ∈ B and n < RB(b)). The other discrepancy in representation is that the measure
of sets in X \ B may not equal the measure of their representation in ∆, even if the reference
measures agree on B. This is because F carries the m-mass of each ∆0,i evenly up the tower, while

4Young calls this “carrying” the measure. The full measure space need not be finite, but it is always σ-finite.
5We will be looking at interval maps later, so the Jacobian will just be the derivative.
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the original system f may map subsets of B to sets of smaller measure. Finally, as we will see later,
this construction means that one single point in X \ B may be represented by multiple points in
∆.

Despite the discrepancies in representation, useful conclusions can still be drawn from the Young
tower representation of a map. In the following definition, I propose a way to formalise the con-
struction of a Young tower from a system (X, E , µ, f) and a base set B. In the interest of having
analogous notation to (∆, F ), the base set B is referred to here as X0.

Definition 2.3 (Young Tower Representation). Let (X, E ,m) be a finite measure space and f : X 	
be measurable. Let X0 ∈ E be a base set of positive measure whose iterates cover almost all of X
(i.e. m(∪n≥0f

nX0) = m(X)) and such that the return time function RX0 is finite for m-almost
every point in X0. Suppose X0 admits a measurable partition {X0,i}i=1,2,... where RX0 is constant
on each partition set.6 Finally, assume that f and its inverse are nonsingular with respect to m. We
say that (X, f) has a Young tower representation as (∆, F ) with base X0 if fRX0 |X0,i : X0,i → X0

is a bijection for all i, and if it is possible to construct a valid Young tower with the following
parameters from Definition 2.2:

• (∆0,B|∆0 ,m) = (X0, E|X0 ,m);

• ∆0,i = X0,i;

• R = RX0 ;

• ζi = fRX0 |X0,i .

If a tower can be constructed but it does not satisfy some or all of the conditions Y2–Y5, we still
call the above a Young tower representation, but we agree to explicitly state which conditions are
not met. Y1 is more essential as measurability is always desirable.

Remark 2.4. This definition will allow us to convert an arbitrary system into a Young tower in
a standardised way. Note that the various conditions on (X, E ,m) are all there to ensure we can
slot the system nicely into Young’s framework. Additionally, we require that the iterates of X0

sweep m-almost all of the space X: this is so that for m-almost every x ∈ X, there exists z ∈ X0

and n ≥ 0 such that x = fn(z). This means x will have a representation in the tower as (z, n).
Conversely, each point (z, n) ∈ ∆ will correspond to fn(z), and so each set ∆l,i will correspond to
f lX0,i. The final nonsingularity condition is to ensure that the assumption that F carries m up
the tower ∆ is not entirely unreasonable when looking at the dynamics on X.

2.1.3 Some immediate results

As mentioned earlier, if (∆, F ) is a Young tower, this implies that it has a number of nice properties.
These include statements on invariant measures, the system’s rate of mixing, and some statistical
limit laws. I invite the reader to look at Young’s paper [You99], where these results are contained
in Theorems 1–4 with the same notation as we have used here, then proved in the latter part of
the paper. These will be of use to us in the next chapter.

6In practice, if we know the return time function, we can use it to partition X0 by setting X0,i = {x ∈ X0 : RX0 =
i}.
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Rather than repeating Young’s work here, I suggest we use the tower model to prove a weaker, more
accessible version of one of Young’s theorems which will benefit us when studying the Manneville-
Pomeau map in Chapter 3. The idea is to work through the proof to see the tower in action. At
the end, we will be able to move away from Young tower representations entirely, keeping just the
intuition developed, to show that the proposition holds for general systems too.

Proposition 2.5 (From [You99], Theorem 1). Let (∆, F ) be a Young tower as in Definition 2.2.
If there is a probability measure ν0 on (∆0,B|∆0) such that ν0 � m and ν0 is FR-invariant, then
(∆,B) admits an F -invariant measure7 ν � m.

Proof. The idea for this proof is to say the following: “to get the measure space (∆,B,m), we took
the measure m on ∆0 and carried it up the tower. Can we just do the same with ν0?”

The answer, conveniently, is yes. So for a set A ∈ B, we somehow “project” A down onto the base
and measure it there. A closed form for the resulting measure is as follows:

ν(A) =

∞∑
j=1

Rj−1∑
k=0

ν0(F−kA ∩∆0,j). (2.1)

This is the measure given by Young in the proof of Theorem 1, but no justification of invariance
or absolute continuity is given, so I will fill in the blanks to make the proof easier to follow.

Basic measure theory shows that ν is indeed a measure, since it is a linear sum of measures all
constructed from ν0 using restrictions and push-forwards (see Proposition 1.4).

We need to prove that this measure is F -invariant, and absolutely continuous with respect to m.
First, it may help to calculate a simpler expression for ν(A) for particular values of A, namely if A
is fully contained in one element of the partition Z.� To this end, suppose A ⊆ ∆l,i. Iterates F−kA
will only intersect non-trivially with a ∆0,j within k ≤ Rj − 1 steps if j = i, and only k = l will
take us back to level 0. Noting that F−lA ⊆ ∆0,i, we get:

ν(A) = ν0(F−lA).

This is a slightly clearer demonstration of the fact that ν projects A to the base and measures
it there. (The double sum in the definition of ν is just there to deal with the case where A may
overlap with multiple sets in Z; we need different negative powers of A to map different parts of A
to the base).

We’re now able to prove that ν is F -invariant on sets A ⊆ ∆l,i. First suppose l > 0; then
F−1A ⊆ ∆l−1,i, and

ν(F−1A) = ν0(F−(l−1)F−1A) = ν0(F−lA) = ν(A).

Secondly suppose l = 0. Taking the inverse of a set at the bottom of the tower gives a union of sets
at the top, as in the diagram below. These sets will all be some levels directly above (FR)−1A ⊆ ∆0.

7The measure ν is not necessarily a probability measure.

23



∆0,1

∆1,1

∆2,1

∆0,2

∆1,2

∆2,2

∆3,2

∆0,3 ∆0,4

∆1,4

∆2,4

∆3,4

∆4,4

∆0,5

∆1,5

∆2,5

A

= F−1A

∆0

∆0

∆0

∆0

∆0

F

R1 = 3 R2 = 4 R3 = 1 R4 = 5 R5 = 3

∆0

∆1

∆2

∆3

∆4

Figure 2.2: A Young tower with the pre-image of A marked.

When we take their ν-measure, all these sets will be projected back down to their analogous points
in ∆0, and so cancelling the gain in levels with the loss of levels due to ν we get

ν(F−1A) =

∞∑
j=0

ν0((FR)−1A ∩∆0,j)

= ν0((FR)−1A ∩∆0) since we are summing over all j

= ν0((FR)−1A) Since (FR)−1A ⊆ ∆0

= ν0(A) by invariance

= ν(A)

Having covered the case where A sits nicely inside one partition set, we can now generalise to any
measurable set A as follows. Let A = A1 ∪A2 ∪ . . . be a partition of A into disjoint sets that all sit
inside one element of Z. (Certainly we don’t need more than a countable partition here, since Z
is countable). Each Ai can be chosen to be measurable8, and furthermore F−1Ai is disjoint from
F−1Aj for all i 6= j. So:

ν(F−1A) = ν(F−1A1) + ν(F−1A2) + · · · = ν(A1) + ν(A2) + · · · = ν(A).

To prove that ν � m, suppose that A ∈ B has positive ν-measure. Then at least one set in
{A ∩ Z : Z ∈ Z} must have positive ν-measure. Call this set A′ and suppose it lies at level l. We

8The easiest choice is to set each partition element to A ∩∆l,i for some l, i.
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have

ν(A′) = ν0(F−lA′) since A′ lies in one partition element

≤ m(F−lA′) since ν0 � m

= m(A′) since m is carried up the tower by assumption

≤ m(A) since A′ ⊆ A.

Since we had ν(A′) > 0, this concludes the proof.

Remark 2.6. This proof did not use any of the conditions Y2–Y5! This suggests that we are
looking at something more general than Young’s structures, and indeed we will see a generalisation
of this just after having discovered the limitations through an example. In the original statement
of Young’s Theorem 1, the assumptions are necessary in order to reach a stronger conclusion: an
F -invariant measure always exists (we don’t even need to find ν0 first—its existence is guaranteed
by the theorem, and it is absolutely continuous with respect to m).9 Furthermore, this invariant
measure is ergodic and finite (with this proof, finiteness is not guaranteed, though we correct this
in Proposition 2.9).

We have established that if we can represent a dynamical system as a Young tower (∆, F ), and if
we can find a probability measure on its base ∆0 which is invariant under the induced map FR,
then we can somehow “push” that base measure so that it extends to the full tower ∆. However,
this is not very useful unless we can turn this measure into an invariant measure for our original
space X, with our original function f acting on it: currently, we have an invariant measure for a
system similar to, but not actually isomorphic to, the original system. Fortunately, we are quite
close to deducing from ν an invariant measure on X. Let’s look at an example to see why the two
systems (X, f) and (∆, F ) are not analogous.

2.1.4 Non-uniqueness of representation

In this subsection, I provide an example to see how to construct a Young tower. We will also
encounter an issue in the way Young towers represent the space they are constructed from, which
we will then attempt to reconcile in following subsections.

Consider the set of states S = {1, 2, 3} and the topological transition matrix

A =

1 1 1
1 0 0
0 1 0

 .

This gives rise to a shift space Σ+
A (see Definition 1.17), containing all infinite sequences of digits

1, 2, 3 where a 1 can be followed by any digit, but all 2s are followed by a 1 and all 3s are followed by
a 2. We will try to represent this system as a Young tower, but will not worry about the technical
conditions.

Note that because of the rules on what digits may follow a 2 or a 3, we actually have e.g. [1, 2] =
[1, 2, 1] and [1, 3] = [1, 3, 2] = [1, 3, 2, 1], where the sequences surrounded by brackets denote cylinder
sets. This will be useful later.

9The proof of existence of ν0 can be seen as one form of the Ergodic Folklore Theorem (Theorem 3.3).
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When we apply the one-sided shift σ to Σ+
A, we get, for example,

σ((1, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, . . . )) = (1, 2, 1, 3, 2, 1, 1, 3, 2, 1, . . . ).

We might notice, looking at A, that if a point lies in the cylinder [1] (all words starting with 1),
then we are guaranteed to return to [1] very quickly. Indeed, if w ∈ [1], then one of the following
will happen:

• σ(w) ∈ [1]

• σ(w) ∈ [2] =⇒ σ2(w) ∈ [1]

• σ(w) ∈ [3] =⇒ σ2(w) ∈ [2] =⇒ σ3(w) ∈ [1].

Hence the return time function to [1], denoted R[1], takes values in {1, 2, 3}. In fact, we can
characterise this function fully:

R[1](w) =


1 w ∈ [1, 1]

2 w ∈ [1, 2]

3 w ∈ [1, 3].

This is exactly the partition we need to start building our tower. Using the notation from Defi-
nition 2.3, define X0 = [1], and partition this base set into three parts on which the return time
function is constant: X0,i = [1, i] with Ri = i for i = 1, 2, 3. In our tower, elements w ∈ X0,i are
represented by (w, 0) ∈ ∆0,i.

To construct the higher tower levels, we add i − 1 floors above each ∆0,i. So, ∆0,1 has nothing
above it, since the return time on X0,1 is 1. The base set ∆0,2 has one level above it, and ∆0,3 has
two above it. This fully describes the tower structure as in the picture below:

∆0,1 ∆0,2 ∆0,3

∆1,2 ∆1,3

∆2,3

∆0

Figure 2.3: Symbolic structure of the Young tower

This is where the difference between Σ+
A and ∆, mentioned in the previous section, becomes notice-

able. In Remark 2.4, we said that every set ∆l,i was meant to correspond to σlX0,i in the original
shift space. In our example, this namely means that:

• ∆1,2 corresponds to σX0,2 = σ[1, 2] = σ[1, 2, 1] = [2, 1];

• ∆2,3 corresponds to σ2X0,3 = σ2[1, 3] = σ2[1, 3, 2, 1] = [2, 1].
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So, the same set [2, 1] in the shift space is represented by two distinct sets in the tower: ∆1,2

and ∆2,3. This shows that while the tower representation is a good way to visualise the rough
structure of the dynamics on Σ+

A, the representation is not in bijection with the original set. It
may duplicate elements of the partition so that the same point in Σ+

A could be in multiple different
parts of the tower, depending on where in the base set X0 the orbit started. In the worst case,
this representation could be countable-to-one (a point in the state space could be represented by a
different point in every column of the tower, and the tower could have countably many columns).
This will require some thought when we look to convert an invariant measure on ∆ into an invariant
measure on Σ+

A.

The key when converting back will be to “squash” down all the different points in ∆ that actually
correspond to the same point, down to that one point. Returning to full generality, this leads
naturally to a notion of projection as alluded to in Remark 2.4. This is a known construction in the
literature, but I propose some clarity on the projection that I have had trouble finding elsewhere
(likely because these sorts of properties seem to be considered trivial).

2.1.5 The Young tower projection

Definition 2.7 (Young Tower Projection). Let (X, E ,m) be a finite measure space and f : X 	
be measurable. Suppose (X, f) admits a Young tower representation (see Definition 2.3) as (∆, F )
with base X0, partitioned into {X0,i}i=1,2,.... (We do not require that Y2–Y5 are necessarily met).
Then we define the Young tower projection π∆ as follows.

π∆ : ∆ −→ X

(z, n) 7−→ fn(z).

Proposition 2.8. Let (X, E ,m) be a finite measure space and f : X 	 be measurable. Suppose
(X, f) admits a Young tower representation with base X0 on the measure space (∆,B,m), and
suppose that (∆, F ) has an invariant measure ν � m. Then, the measure ν ◦ π−1

∆ on X is f -
invariant and a.c. w.r.t. m. This is the case regardless of whether Y2–Y5 are met.

Proof. Caution is necessary throughout this proof, as we have slightly abused notation by consid-
ering m to be a measure both on X and on B. In reality, m is the ambient measure on X, and we
extend it to a measure on B by assuming that m is the same on X0 and on ∆0, and then carrying
m up the tower ∆.

Our first aim is to show that π∆ ◦F = f ◦π∆ (i.e. the projection conjugates the two systems). Let
(z, n) ∈ ∆.

• If n+ 1 < R(z), then π∆(F (z, n)) = π∆(z, n+ 1) = fn+1(z) = f(fn(z)) = f(π∆(z, n)).

• If n + 1 = R(z), then π∆(F (z, n)) = π∆(fR(z)(z), 0) = fR(z)(z) = fn+1(z) = f(fn(z)) =
f(π∆(z, n)).

This proves π∆ ◦ F = f ◦ π∆, and we can invert this to get

F−1 ◦ π−1
∆ = π−1

∆ ◦ f
−1.
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Now let E ∈ E . To show ν ◦ π−1
∆ is f -invariant:

ν ◦ π−1
∆ (f−1E) = ν(π−1

∆ ◦ f
−1E)

= ν(F−1 ◦ π−1
∆ E)

= ν(π−1
∆ E)

= ν ◦ π−1
∆ (E).

To show ν ◦π−1
∆ is absolutely continuous with respect to m, let E ∈ E have positive ν ◦π−1

∆ -measure.
Then ν(π−1

∆ E) > 0, hence m(π−1
∆ E) > 0 (since we assumed ν � m) where here, m is a measure on

∆. Since Z is a countable partition of ∆, this means we can find a ∆l,i such that E′ := (π−1
∆ E)∩∆l,i

has positive m-measure. Now, by the conjugation properties of π∆, we have

f lπ∆F
−lE′ ⊆ f l π∆F

−lπ−1
∆︸ ︷︷ ︸

=f−l

E = E. (2.2)

� Since m on ∆ is generated by carrying m on ∆0 upwards and E′ ⊆ ∆l,i, we have m(F−lE′) =

m(E′) > 0. Furthermore, this new set F−lE′ lies in the base ∆0 where m agrees between both
measure spaces, so the projection has no effect: m(π∆F

−lE′) = m(F−lE′) > 0. By nonsingularity
of the inverse of f (assumed in Definition 2.3), this further implies m(f lπ∆F

−lE′) > 0. By (2.2)
we conclude that m(E) > 0.

So ν ◦ π−1
∆ does indeed satisfy the conditions.

Using the above theorem, we can recover from a measure on a Young tower an analogous projected
measure on the original system.

Returning to the case of expressing a pre-existing system (X, f) as a Young tower, our workflow
for finding an absolutely continuous measure has therefore been:

1. Express the original system (X, f) as a Young tower (e.g. using Definition 2.3).

2. Find an invariant measure on the induced map FR acting on the base ∆0 of the Young tower
(e.g. using Young’s theorems in [You99], or directly on the original system).

3. Push this measure up the tower to find a measure ν for ∆ (using Proposition 2.5).

4. Squash this measure down to X via the projection π∆ (using Proposition 2.8).

If we don’t have an interest in expressing the system as a Young tower at all, then there is an
analogous method of “pushing” a measure for the induced map back to the original system that
stays in X the whole time. If we are inducing on a base set X0 ∈ E that satisfies the conditions
of Definition 2.3 (not necessarily Y2–Y5) and get a function fR which has an invariant measure
κ0 � m, then we can push this measure back onto (X, f) using:

κ(A) =
∞∑
j=1

Rj−1∑
k=0

κ0(f−k(A) ∩X0,j), (2.3)

where we have used the same partition of X0 into {X0,j}j , sets on which RX0 is constant and equal
to Rj . This is equivalent to the measure ν we found for the Young tower, although the proof of
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invariance is slightly less visual. In fact, one can even show that the measures obtained via both
methods are the same: ν ◦ π−1

∆ = κ, provided that ν was generated by pushing κ0 too.10

However, this approach has the advantage of skipping steps 1 and 4 from the list above; and since
all the inducing is happening in the original space (X, E ,m), we have less to keep track of when
ensuring absolute continuity of measures and conversion of σ-algebras. This is the technique we
will use later when working on the Manneville-Pomeau map.

2.1.6 Getting a probability measure

The measure κ, which we just found to be f -invariant, is also absolutely continuous with respect to
the reference measure m on X. However, one key property of this measure remains to be proved:
can it be made into a probability measure?

This all depends on the value of κ(X): if the size of the space is finite, we can normalise our
measure. If it’s infinite, then we haven’t found a probability measure, though it is still invariant.

To compute κ(X), it’s helpful to partition X in a way which simplifies the expression of κ. The
best way to do this is in fact to go back to the equivalent Young tower expression, where every
block of the tower is a set ∆l,i, and the set of all ∆l,i partitions ∆. So, we consider

κ(X) = ν(π−1
∆ X) = ν(∆).

Conveniently, this means all we have to do is compute the measure of the tower ∆. Recall from the
proof of Proposition 2.5 that the measure of A ⊆ ∆l,i is ν(A) = ν0(F−lA). Namely, this implies
ν(∆l,i) = ν0(∆0,i).

Partitioning ∆ as mentioned, we get:

κ(X) = ν(∆)

=
∑
i

Ri−1∑
l=0

ν(∆l,i)

=
∑
i

Ri−1∑
l=0

ν0(∆0,i)

=
∑
i

Riν0(∆0,i)

=
∑
i

ˆ
∆0,i

Rdν0 since R is constant and equal to Ri on ∆0,i

=

ˆ
∆0

Rdν0 since {∆0,i}i partitions ∆0

If we have derived κ without using a Young tower, this works out to:

κ(X) =

ˆ
X0

RX0 dκ0.

10Note that κ0, as a measure on the base, can be seen both as a measure on X0 and on ∆0, hence our ability to
push it through two different models.
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We also note that by partitioning ∆ by {∆l}l, and using the fact that ν0 is a probability measure,
we can similarly show that κ is always σ-finite.

We have proved:

Proposition 2.9. Let (X, E ,m) be a finite measure space and f : X 	 be measurable. Suppose
(X, f) admits a Young tower representation (see Definition 2.3) as (∆, F ) with base X0, but not
necessarily satisfying Y2–Y5. Suppose further that there exists an fR-invariant measure κ0 � m.

Let κ be the pushed invariant measure on X as defined in (2.3). Then κ is σ-finite, and furthermore,
it is finite if and only if ˆ

X0

Rdκ0 <∞.

Conventionally, when the measure is indeed finite, we normalise it by dividing through by the
integral (i.e. κ(X)). We may refer to this as κ̄, and this is a probability measure.

Note that this condition on finiteness of the invariant measure is equivalent to Y5! So we have
discovered the importance of Young’s “return time integral” condition.

We are done with Young towers for now, but we should keep in mind that the construction we
have studied in this section is a useful symbolic representation for a system (X, f). The latter
subsections have also shown that although the representation via a tower (∆, F ) may not be in
bijection with X, it is close enough that we can make inferences about X by applying the tower
projection. Deciding how well properties translate between spaces will also be a question we will
need to ask in the next section, where we move on to a different symbolic representation.

2.2 Markov maps and Markov shifts

We saw in section 1.3 how to construct a symbolic dynamical system called a CMS, where points
in the state space are infinite walks along a topological transition graph given by a matrix A of
zeros and ones. We will now see how CMS can be used to symbolically model dynamical systems
on other spaces. The general idea will be to break down the state space of some dynamical system
(X, f) into an at most countable partition, and then only care about the partition element that
each x ∈ X lies in, rather than its precise location. In a sense, we are discretising the system.

Some restrictions are necessary on the partition to ensure that the resulting CMS appropriately
“represents” f . Different sources will do this in different ways. For a taste of the general concept, I
refer the reader to [Aar97, Chapter 4], which provides a definition appropriate for abstract measure
spaces. To simplify the setting, in this section we will only consider definitions of Markov concepts
appropriate for interval maps, and to do this we take inspiration from [BG97, Chapter 9]. Interval
maps will be the main point of focus for the rest of this section (and indeed also in the next chapter).

2.2.1 Definition

Definition 2.10 (Markov Transformation). Let X be an interval and B(X) be the Borel σ-algebra
on X. Let f be a transformation of the measure space (X,B(X),m), where m is equivalent to
Lebesgue measure.11 Let P = {Pi}i∈S ⊆ B(X) be a non-trivial and at most countable partition of
X into intervals of positive m-measure. Then f is a Markov transformation with respect to P, and
P is a Markov partition for f , if:
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1. (Bicontinuity). For each P ∈ P, f |P is a continuous bijection with continuous inverse (i.e.
f |P is a homeomorphism);

2. (Markov Condition). ∀i, j ∈ S, either Pj ∩ f(Pi) = ∅ or Pj ⊆ f(Pi);

3. (Shift Condition). ∀s ∈ S, ∃i, j ∈ S such that:

Pi ⊆ f(Ps)

Ps ⊆ f(Pj).

Furthermore, the Markov partition P is called a strong generator if:

4. (Strong Generation).
∨∞
i=0 f

−iA(P)
◦
= B(X), where A(P) is the algebra of all finite unions

of partition sets in P.

Sometimes we will refer to this Markov transformation as (X,B(X),m, f,P).

Remark 2.11 (Interpretation of definition).

1. Bicontinuity is a niceness condition on f which allows us to talk about the inverse function
(f |P )−1 of f on each branch P ∈ P. This condition also ensures that the image of any Markov
partition element is not only a union of intervals: it is in fact connected, and so is itself an
interval.

2. The Markov condition is the main condition to be expected in this definition. It requires that
every set in the partition maps cleanly onto other sets, and this will allow us to talk about
going “from” some Pi “to” some Pj (which is possible if Pj ⊆ f(Pi)).

3. The shift condition is a technicality required here so that we can match Markov maps with
the CMS defined in the previous chapter. In Definition 1.16 we assumed that the topological
transition matrix contains at least one 1 in every row and every column, and the condition here
is analogous to that: each partition set must be reachable from at least one (not necessarily
distinct) set, and each partition set must map to at least one (not necessarily distinct) set.
The map f would have to be silly for this condition not to be satisfied. I have not seen this
condition used elsewhere, but will require it here for consistency across chapters.

4. Finally, the optional strong generation condition will come to light when we attempt to create
a conjugacy between (X, f) and a CMS.

The following observation will help us characterise partition sets later.

Lemma 2.12. The nth partition of X into “cylinders” given by:

Pn :=
n−1∨
i=0

f−iP

consists only of intervals (considering singletons as intervals).

11This means µ� Lebesgue and Lebesgue� µ.
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Proof. Proceed by induction on n. The claim is trivial for n = 1. For the inductive step note
that Pn+1 = f−1Pn ∨ Pn. Any set in this partition is f−1Q ∩ Q′ for some Q,Q′ ∈ Pn.� The
function f is invertible on each branch P ∈ P by assumption, and these inverses are continuous.
So, f−1Q = ∪P∈P(f |P )−1Q, and each of these pre-images of Q is an interval (by the inductive
hypothesis and by continuity of (f |P )−1) and a subset of P . (Depending on whether f maps each
given P ∈ P onto Q, some of these pre-images may be empty, but in that case they do not matter.)
Also, Q′ is a subset of some P ′ ∈ P. So,

f−1Q ∩Q′ = (f−1Q ∩ P ′)︸ ︷︷ ︸
an interval

∩ Q′︸︷︷︸
an interval

so f−1Q ∩Q′ is an interval (or empty), as required.

2.2.2 The CMS conjugacy Φ

Next, as promised, we draw a link between Markov transformations and Markov shifts. Let
(X,B(X),m, f,P) be a Markov transformation as in Definition 2.10. We construct a CMS based
on this system using Definition 1.17.

In our setup, S is already an at most countable set, so take it to be our set of states and define the
topological transition matrix A = (aij) to have entries:

aij =

{
1 Pj ⊆ f(Pi)

0 otherwise.

The shift condition ensures that A is a topological transition matrix, so we have created the CMS
(Σ+

A, σ). The idea is that points in x can be represented by points (sequences) in Σ+
A, and we can

do this via the following function. First, define τ : X → S such that τ(x) = i, where i is the unique
element of S such that x ∈ Pi. Then, we consider:

Φ : X −→ Σ+
A

x 7−→ (τ(x), τ(f(x)), τ(f2(x)), . . . ).

One can verify that Φ does indeed map into Σ+
A. To that end, let y ∈ X. Then y ∈ Pτ(y) and

f(y) ∈ Pτ(f(y)) by definition of τ . But then f(y) ∈ Pτ(f(y)) ∩ f(Pτ(y)), so the intersection is non-
empty. This implies aτ(y)τ(f(y)) = 1. Set y = f i(x) for arbitrary i to conclude that the sequence
Φ(x) is admissible in the CMS.

One further desirable property of Φ is that it conjugates the pair of dynamical systems it maps
between, i.e. Φ ◦ f = σ ◦ Φ. This is easily checked: for x ∈ X, we have

Φ(f(x)) = (τ(f(x)), τ(f2(x)), τ(f3(x)), . . . )

= σ((τ(x), τ(f(x)), τ(f2(x)), . . . ))

= σ(Φ(x)).

These initial properties alone give us confidence that representing a Markov transformation as a
CMS is reasonable. Furthermore, if nothing else, we can keep in mind that drawing the transition
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graph of the CMS of f may provide us with some helpful intuition about where orbits go; the first
few sections of the next chapter make heavy use of this intuition.

The remainder of this section has arisen from my initial concern when writing this project that Φ
may conjugate the two systems, but could still be terrible at converting between the two in every
other sense: for example, it could happen that Φ is not a bijection. Hence, I propose some further
assumptions on the Markov transformation that ensure that Φ provides a fairly faithful conversion.
I believe the claims here are not unlike the content of some textbooks, but the assumptions on
those claims may be slightly different. The idea is to give a taste of what properties are needed for
there to be a strong link between a map and its representation.

Example 2.13. Consider the interval map f on X = [0, 1) with Lebesgue measure, given by the
following graph:

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

It is piecewise continuous and invertible on the intervals P1 = [0, 1/4), P2 = [1/4, 1/2) and P3 =
[1/2, 1). The images also map cleanly:

f(P1) = P2 ∪ P3; f(P2) = P1 ∪ P2 ∪ P3; f(P3) = P3.

The shift condition is easy to check and we get the following topological transition matrix:

A =

0 1 1
1 1 1
0 0 1

 .

Note that in this case, 3 ∈ S is an absorbing state since the only valid transition from 3 is back to
3. In the original map, therefore, we expect orbits to eventually get trapped in the set P3. This
also implies that Φ is not almost everywhere injective in this case, since any x ∈ P3 will map under
Φ to the sequence (3, 3, 3, . . . ).

With this example, we may wonder whether the presence of an absorbing state is preventing
injectivity of Φ. However, this is not the only problem, as the next example shows.

Example 2.14. Consider the rotation map by 1/2 on S1, i.e. f : [0, 1) → [0, 1) given by f(x) =
x + 1/2 mod 1. An appropriate Markov partition is {P1 = [0, 1/2), P2 = [1/2, 1)} (this becomes
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clear if you draw the graph of f), and f(P1) = P2, f(P2) = P1. So the topological transition matrix
is

A =

(
0 1
1 0

)
,

which has no absorbing states. But, any x ∈ X has a 2-periodic orbit, since f2(x) = x+1 mod 1 = x.
So every x ∈ P1 has Φ(x) = (1, 2, 1, 2, . . . ), and conversely every x ∈ P2 has Φ(x) = (2, 1, 2, 1, . . . ).

It turns out that ensuring Φ is a bijection is where strong generation comes in handy.

Proposition 2.15. Let (X,B(X),m, f,P) be a Markov transformation as in Definition 2.10, giv-
ing rise to a CMS (Σ+

A, σ). Suppose Σ+
A is equipped with a measure that assigns zero mass to

singletons.12 Then if P is a strong generator, Φ is almost everywhere bijective.

Proof. Surjectivity actually holds regardless of the strong generator condition, as we will see here.
Let w = (w0, w1, w2, . . . ) ∈ Σ+

A. We wish to find x ∈ X such that Φ(x) = w, i.e. x ∈ Pw0 , f(x) ∈
Pw1 , f

2(x) ∈ Pw2 . . . . Equivalently, we need

x ∈
⋂
n≥1

Cnw,

where Cnw :=
⋂n−1
i=0 f

−iPwi ∈ Pn is a cylinder set.� Thinking about the arguments used in the proof
of Lemma 2.12, since each transition in the word w is a valid transition of f on the partition P,
the cylinders Cnw must be non-empty as finite intersections of preimages. The tricky part is proving
that the infinite intersection remains non-empty. To do this, note that there are two cases. Firstly,
it may be that one of the Cnw is a singleton. However, in this case, every subsequent Cn+i

w is also
a singleton, and so the intersection is non-empty. In all other cases, each cylinder in the sequence
is an interval with more than one point, so the interior C̊nw of Cnw is an open interval (an, bn) for
some an < bn. Furthermore, we easily get C1

w ⊇ C2
w ⊇ . . . by definition, so C̊1

w ⊇ C̊2
w ⊇ . . . , and

so (an)n is increasing to a limit a while (bn)n is decreasing to a limit b, and a ≤ b. By real analysis,⋂
n(an, bn) is certainly non-empty if neither endpoint sequence is eventually constant13 (in which

case e.g. a lies in the intersection). But for each n, the endpoints an, bn are necessarily endpoints of
elements of the finite interval partition Pn. So, there are only countably many eventually constant
sequences (an)n, and the same goes for (bn)n. Hence if w has no preimage under Φ, it is part of a
zero measure set, and in all other cases we can find:

x = a ∈
⋂
n≥1

C̊nw ⊆
⋂
n≥1

Cnw,

as required.

For injectivity, suppose x, y ∈ X are such that x < y and Φ(x) = Φ(y) = w = (w0, w1, . . . ) for
some w ∈ Σ+

A. Then as above, x, y ∈ Cnw for all n. Since the Cnw are all intervals by Lemma 2.12,
this implies that each partition Pn contains no intervals that are proper subsets of (x, y). This

must then also hold for the limit σ-algebra
∨∞
n=0 Pn =

∨∞
i=0 f

−nA(P)
◦
= B(X) (the last equality

being deduced from the strong generator condition). However, B(X) contains open proper subsets
of (x, y) since (x, y) is open, a contradiction.

12If we want the measure on Σ+
A to be something other than the zero measure, then Σ+

A should be uncountable,
which is the case provided for example that A is topologically transitive and at least one state maps to at least two
others.
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This is good news, but the strong generator condition can be difficult to check. Fortunately, it is
implied by a natural dynamical property.

Proposition 2.16. Let (X,B(X), µ, f,P) be a Markov transformation as in Definition 2.10, and
suppose µ is an invariant probability measure equivalent to Lebesgue measure such that (X,B(X), µ, f)
is weakly mixing. Then P is a strong generator for B.

Proof. Suppose this is not the case. We know that if the diameter of a sequence of Borel partitions
tends to 0, then the σ-algebra they generate is the Borel algebra B(X). So, it must be that
diam(Pn) 6→ 0. Since each Pn is a refinement of the previous partition, the diameter sequence
must necessarily decrease, so we must have diam(Pn) ↘ δ > 0. Also because the partitions are
refinements, this means we can find a sequence of sets Kn ∈ Pn such that ∀n ≥ 1 : Kn+1 ⊆ Kn and
diam(Kn) ≥ δ. Furthermore, by Lemma 2.12, the Kn are intervals. Let K = ∩nKn. Then K is an
interval of diameter at least δ. Also, K is a subset of K1, an element of P which we will refer to as
P .

Let F :=
∨∞
i=0 Pn. Then certainly F ⊆ B(X), but F cannot contain proper subsets of K, since

none of the Pn do. Since µ is equivalent to Lebesgue measure and K is an interval of positive
measure, we have k := µ(K) > 0. Furthermore, k ≤ µ(P ), but since P is non-trivial, it contains
other sets of positive Lebesgue measure: combined with the fact that X is an interval equipped
with Lebesgue measure, we conclude that µ(P ) < µ(X) = 1. So, 0 < k < 1.

Now, let Q ∈ P be any partition element. By the same arguments, 0 < q := µ(Q) < 1. Let ε > 0.
Since the system is weakly mixing and K,Q are measurable, ∃n ≥ 1 such that

|µ(f−nQ ∩K)− qk| < ε.

But f−nQ∩K ∈ F and this intersection is a subset of K. By our assumptions, this would mean that
either f−nQ ∩K = K or f−nQ ∩K = ∅, and this implies µ(f−nQ ∩K) ∈ {0, k}. But 0 < qk < k,
so picking ε small enough gives a contradiction.

These two propositions should give us some confidence that the conjugacy Φ : X → Σ+
A is a

reasonable tool to use; some ergodic problems are more easily solved in a symbolic setting, and we
can convert problems on the interval into symbolic problems if we are careful with the conversion.

Note that we have not yet assigned a measure to Σ+
A, and it is not essential to do so for the purposes

of this project. However, if we have a measure µ on X, one natural choice for a measure on Σ+
A

could be µ ◦Φ−1. Furthermore, in the cases where Φ is a bijection, we can actually do the reverse:
if we have a measure ν for Σ+

A, then ν ◦ Φ is a measure on X. This could be a starting point for
further investigation but we will not do this here.

When f is also assumed to be linear on each P ∈ P, the behaviour of the system is close enough to
a CMS that f can be studied using matrices with entries related to the distortion of each interval.
This is done in [BG97, Chapter 9].

Remark 2.17. Looking back at the Young tower construction from section 2.1, and the represen-
tations of towers that we drew in Figure 2.2 and Figure 2.3, we might notice that Young towers
and CMS are both methods of symbolically “discretising” the system. Technical conditions in Def-
inition 2.2 aside, Young towers are a way of breaking up the state space into a countable number

13This is a sufficient but not necessary condition; e.g. a < b would also work, but this actually cannot happen here
since P would not be a strong generator.
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of sections. If we view the base set ∆0 as one state, for example, we can construct a CMS where
the remaining states are ∆l,i for l ≥ 1, and there are transitions leading from each ∆l,i to ∆l+1,i,
or from ∆l,i back to ∆0 when the top of the tower is reached. The base ∆0 is then the only state
which can have multiple admissible transitions, and leaving ∆0 makes an orbit O(x) embark on
a predictable loop which inevitably leads back to ∆0 after “R(x)” steps. The non-uniqueness of
representation from subsection 2.1.4 remains an issue that is less prominent with CMS, but this
is nevertheless a good excuse to think about the similarities between the models—especially if the
Markov partition we choose is somehow also linked to inducing, which it will be in the next chapter.

2.2.3 Looking for intermittency in a CMS

Up until this point, this section has contained ideas applicable to all kinds of systems, intermittent
or not. However, the CMS representation of a map allows us to look at the rough movement of
orbits, and so we may be able to search for certain properties of the transition graph of a Markov
map in order to characterise it as intermittent. In this section I propose a heuristic for this, along
with an example.

Recall that we defined intermittency as being the alternation of laminar phases with chaotic bursts
of motion (Definition 1.29). With walks on a graph, a laminar phase could be interpreted as a
sequence of states each with only one admissible transition, leading from one to the next. On the
other hand, for a chaotic burst, we can look for states that have multiple admissible transitions.

Intermittency is a qualitative concept so this is not a perfect characterisation, but it will in some
sense prove true in the next chapter when we study the Manneville-Pomeau map. For now, let’s
design a map where we can distinguish between these behaviours.

Example 2.18. Consider the function f : [0, 7]→ [0, 7] given by the following graph:

0 1 2 3 4 5 6 7
0

1
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6

7

We can show without too much difficulty that an appropriate Markov partition for f on [0, 7] is
P = {Pi}i∈S , where S = {1, 2, . . . , 7} and:

P1 = [0, 1); P2 = [1, 2); . . . P6 = [5, 6); P7 = [6, 7].

Calculating the image of each set gives us the following graph.
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1 2 3 4 5 6 7

This seems to show that an orbit passing through the cylinder [4] can stay there for a certain
number of iterates (since (4, 4) is an admissible word), but once it leaves, its path must be either
4 → 5 → 6 → 7 or 4 → 3 → 2 → 1. This part of the orbit is determined and hence we might
view it as being “laminar”. On the other hand, only when an orbit reaches the end of this part of
the flow does it arrive in either state 7 or state 1; in both cases it can be mapped from there to
anywhere in the space. This is our chaotic step or “bursting region”.

It seems as though the bursting regions correspond to areas where |f ′| is large in this case, and this
should be expected: the map is expanding here (i.e. it has high derivative, so points close together
are mapped |f ′| = 7 times further apart than they were).

Another important observation on this map is that {[0, 1), [1, 6), [6, 7]} is also an appropriate Markov
partition, and the associated CMS is the full shift on three symbols. However, this somehow gives
us less information, because the laminar behaviour inside [1, 6) is factored out. Also, f is not
piecewise linear with respect to this partition. In any case, we should keep in mind that there are
often several valid choices of partition, and we should select carefully based on what we are trying
to show.

We should be cautious about jumping to conclusions about the intermittency of a system based
on a CMS representation. The discussion above remains heuristic, and in fact we can find Markov
partitions for decidedly non-intermittent systems that make them look like periods of laminar flow
are possible. There is an example of this in the next chapter with the doubling map; the key there
is that while laminar flow is possible, the laminar region of the graph is mapped to only rarely.
Hence, we should consider the relative sizes of the partition elements with respect to a measure of
interest, such as Lebesgue, to see whether the laminar regions we discover may only correspond to
a very small part of the space.

Alternatively, we might conclude that the takeaway from this chapter is that there is a little bit of
intermittency in everyone.
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Chapter 3

The Manneville-Pomeau Map

In this chapter, our aim is to apply some of the notions discussed in previous chapters to a concrete
example. One of the simplest examples of a dynamical system with intermittent properties is the
Manneville-Pomeau map, of which there are multiple parametrisations.

Over the course of this chapter, we will discover many classical results from the literature about
the Manneville-Pomeau map that relate to its intermittent properties, and will present proofs of
these results where possible. First, we should agree on an appropriate definition for this map.

3.1 Definition

The term Manneville-Pomeau map is used to refer to a class of interval maps that are topologically
similar to the famous doubling map x 7→ 2x mod 1, but with a tangency at the fixed point at the
origin, which distinguishes them from faster mixing systems.

This means that at the fixed point x = 0, the derivative of the map is 1, and things move slower
under iterated applications of the map than they do elsewhere in the space. We call this point a
neutral fixed point or an indifferent fixed point.

We’ll see that this is what creates the intermittent behaviour we’re looking for.

Throughout this chapter, we’ll use the definition of the Manneville-Pomeau map from [LSV99].
This leads some sources to refer to this parametrisation as the Liverani-Saussol-Vaienti map or
LSV map. Let I := [0, 1], and define Tα : I → I as follows:

Tα(x) =

{
x(1 + 2αxα) x ∈ [0, 1/2)

2x− 1 x ∈ [1/2, 1].

It will be helpful to have names for these two branches, so let u : [0, 1/2) → I be given by
u(x) = x(1 + 2αxα) and v : [1/2, 1]→ I be given by v(x) = 2x− 1.

Notice that the tangency in the first half of the interval can be controlled using the parameter α.
When α = 0, this is just the doubling map; as α increases, the tangency gets stronger. For α > 0,
the derivative T ′α is equal to 1 at x = 0, making the curve tangent to the y = x line.

Let’s plot the Manneville-Pomeau map for a few values of α, including the α = 0 case (doubling
map) for comparison.
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Figure 3.1: Plots of the Manneville-Pomeau map on [0, 1] for α = 0, 1
4 ,

3
4 .

To study this map, we will place ourselves in the usual σ-algebra for the unit interval: ([0, 1],B, λ)
where λ denotes Lebesgue measure and B denotes the Borel algebra. From this point onwards,
unless stated otherwise, all relations between sets (such as equalities and inclusions) are considered
true as long as they hold up to a λ-zero set.

3.2 A Markov representation for Tα

To understand this interval map better, we begin by finding a suitable Markov partition—hopefully
one which will demonstrate the system’s slow dynamics about the origin. We can do this inductively,
beginning with the right-hand half of the interval I0 := [1/2, 1]. This set maps bijectively onto I
under Tα, and we now seek to suitably partition the other half of the interval I \ I0.

To demonstrate the flow away from 0, we can imagine the orbit of any point x ∈ [0, 1/2) as being
an increasing sequence of points x ≤ Tα(x) ≤ T 2

α(x) ≤ . . . that eventually reaches I0, where it is
then mapped to some other (unpredictable) point in the space. Then, the final point before the
orbit reaches I0 necessarily lies in T−1

α I0 ∩ [0, 1/2). The point before that lies in the pre-image of
that set, i.e. T−1

α I1 ∩ [0, 1/2), and so on. The endpoints of each interval in this sequence cannot
be expressed algebraically for general α, but it can be shown without too much difficulty that they
are the pre-images of the point 1/2. Therefore, we define the following sequence (xn)n ⊆ I:

x0 = 1, x1 =
1

2
, xn+1 = u−1(xn) ∀n ≥ 1.

Our pre-image intervals are then:

I0 = [1/2, 1], In = [xn+1, xn) ∀n ≥ 1.

Note that xn → 0 as n → ∞, so the union of these intervals is in fact I (without x = 0, but this
doesn’t matter). The first few elements of the partition are plotted below:
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Figure 3.2: The first few intervals of the Markov partition for α = 3
4 .

By construction, the intervals in our partition have the following images:

TαI0 = I =
∞⋃
k=0

Ik; TαIn = In−1 ∀n ≥ 1.

We can then easily check the conditions of Definition 2.10 and conclude that (I,B, λ, Tα, {I0, I1, . . . })
is a Markov transformation. This allows us to represent the system as a countable Markov shift,
using the technology from section 2.2. We can also convince ourselves that the Markov partition
{Ii}i≥0 that we have chosen for I is a strong generator. So by Proposition 2.15, Φ is a bijection up
to a countable set of exceptions for surjectivity. The topological transition matrix A for this CMS
is the adjacency matrix of the following transition graph:

01234· · ·

Figure 3.3: The transition graph of the CMS corresponding to Tα.

A CMS with the above transition graph is called a renewal shift, since the system “resets” every
time the 0 state is reached. Choosing this representation allows us to look at the dynamics from
the point of view of the second half-interval I0. From there, any orbit leaving I0 looks like it jumps
away by a certain amount (the closer the orbit is to the fixed point at x = 0, the further away it is
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from I0) before steadily returning to I0, interval by interval. Although this is one of many possible
Markov representations, looking at Tα as a renewal shift will be a useful perspective to have in
subsequent sections.

Note that expressing Tα as a renewal shift says nothing about its intermittent properties. In fact,
the construction of (In)n above is possible for any value of α ≥ 0. Namely, choosing α = 0 allows
us to express the doubling map x 7→ 2x mod 1 as a renewal shift, despite this map being a textbook
example of a chaotic, non-intermittent system.

However, the α = 0 and α > 0 partitions do differ in their asymptotics. When α = 0, the sequence
(xn)n is easily computed exactly to be

xn = 2−n,

so an exponentially decreasing sequence. On the other hand, it is well-known (see for example
Lemma 2.1 in [Iso95]) that for α > 0 we have

xn = (α2α(n+ 1))−1/α(1 +O(n−1)), (3.1)

which is only polynomial. This is not the only time that a contrast between polynomial and
exponential decay will appear in this chapter.

Remark 3.1. This is not the only possible CMS we can get from Tα; for example, a simpler choice
would come from a partition of I into {[0, 1/2), [1/2, 1]}. This is also a Markov partition for the
system, but the lower resolution means that less inferences will be possible. There is a qualitative
reason for this similar to what we noted in example 2.18: we will not be able to see the laminar flow
that we can see here. On a more technical level, results that we can prove for a lower-resolution CMS
will in general not translate well to the original system because of the distortion this map presents.
Making this rigorous requires thermodynamic formalism; the idea is that if we pick the standard
potential φ = − log |T ′α|, then this partition will not give summable variations of φ (this means φ
varies too much on the depth-n cylinders for the series given by supremum of these variations on
each level to be finite). More detail about summable variations can be found in [Sar99].

3.3 Finding an invariant measure

We now turn to the classical ergodic problem of finding an invariant measure for Tα. Remember that
out of the many possible invariant measures, there are many uninteresting ones, such as 1

2(δ0 + δ1)
(0 and 1 being the fixed points of the map we are working with). So to narrow things down, we
wish to find an invariant measure that is absolutely continuous with respect to Lebesgue measure
λ. Ideally we would also like it to be a probability measure.

There are several ways to prove the existence of an a.c. invariant measure. A non-constructive
proof in [LSV99] is able to establish some basic properties of this measure (or rather, its density)
which we will discuss later—but this uses transfer operators, and we will instead exhibit a more
elementary proof which makes good use of the inducing scheme method seen in section 2.1. The
general idea is to try to factor out the “problem point” at x = 0 where the derivative is 1, which is
preventing the system from expanding nicely everywhere, by picking a base set away from 0. We
will in fact not need Young towers for this proof, working instead with the direct pushing formula
in (2.3). We will, however, need to induce on a base set. The rest of this section demonstrates a
standard inducing-pushing technique that I have worked through with guidance from my supervisor
Dr Mike Todd, with a historical interlude as we invoke a powerful theorem from ergodic theory.
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Fix α ∈ (0, 1). Our first task is to find a nice subset of [0, 1] to induce on. To construct the CMS
in the previous section we looked at things “from the point of view” of I0, and the same strategy
will work here; pick A := I0 = [1/2, 1].

Let R denote the return time function RA : A→ N under Tα, and consider now the induced system
TA := TRα |A as in previous examples, i.e.

TA : A −→ A

x 7−→ TR(x)
α (x).

This produces an induced system (A = [1/2, 1], TA), and we will use Lebesgue measure restricted
to this interval (but not normalised) as the base measure here, so that λ(A) = 1/2. To find an a.c.
invariant measure for Tα, it now suffices to find one for TA and then push it back to Tα. But what
makes TA any easier to deal with than Tα?

The key is that TA turns out to be a full-branched expanding map, and we will define this below. Note
that this terminology is not standard and different papers will provide similar, but not identical,
definitions for similar terms; this is adapted from [Tod20] but slightly generalised in favour of a
historical note.

Definition 3.2 (Full-Branched Expanding Map). We say that an interval map f : J → J (for
some interval J ⊆ R) is a full-branched expanding map or FBEM if:

1. (Full-Branched Condition). There exists an at most countable partition P = {Ji}i of J such
that each Ji is an interval, f is continuously differentiable on the closure of each Ji, and
f(Ji) = J ;

2. (Bounded Distortion Condition). Letting Pn :=
∨n−1
j=0 f

−jP denote the set of n-cylinders, we
have

sup
n≥1

sup
Z∈Pn

sup
x,y∈Z

∣∣∣∣(fn)′(x)

(fn)′(y)

∣∣∣∣ <∞;

3. (Expanding Condition). There exists γ > 1 such that |f ′(x)| ≥ γ for all x ∈ J (taking
appropriate derivatives at boundary points).

The first and third conditions reflect the properties alluded to in the name “FBEM”, while the
second—the bounded distortion condition—imposes an additional technical restriction. Quoting
from [Adl73], this condition can be viewed as measuring the map’s “departure from linearity”: if f
is piecewise linear then the supremum will equal 1, while a non-constant derivative will drive the
supremum upwards.

Since bounded distortion is difficult to check directly because of the need to bound the derivatives
of arbitrary iterates of f , more straightforward tests that imply the same results are used instead.
Usually, one of the following works:

D1. f is uniformly 1 + β-Hölder on each branch Ji, for some choice of β > 0;

D2. (Adler-type condition). f is (not necessarily uniformly) C2 on each Ji, and the following
holds:

sup
x∈I

|f ′′(x)|
|f ′(x)|2

<∞;
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Proof that D1 implies the bounded distortion condition can be found in [Tod20], while justification
for D2 is given in [Adl79].

We might notice that Tα itself is very nearly a FBEM, failing only on the final condition: we cannot
uniformly bound the derivative away from 1. We might, however, have more luck with TA. The
reason we want to prove this is that we will be able to apply the following powerful theorem on
expanding maps:

Theorem 3.3 (Ergodic Folklore Theorem). Every FBEM f has an acip µ. In fact, the sequence
of measures (µn)n given by:

µn =
1

n

n−1∑
j=0

f j∗λ

has a subsequence (µnk)k which converges weak* to µ.1

The earliest account of this theorem is difficult to track down. Furthermore, slight variations on
the FBEM assumptions that do not change the conclusion are common (one important one being
that we can weaken the full-branched assumption to a Markov condition, but we will not need that
here). The literature often cites Adler [Adl73], but in his famous afterword to Bowen [Adl79], Adler
provides a chain of mathematicians who in turn had discovered the theorem before him. Within
the field of ergodic theory, this has brought about the name of “Folklore Theorem”, although since
many theorems in mathematics go by that name, it is perhaps safer to refer to it here as the Ergodic
Folklore Theorem.

For our purposes, a good proof of the Ergodic Folklore Theorem can be found in [Tod20], and we
will not repeat it here; however, the idea of the proof is to show firstly that the subsequence above
does indeed converge to an invariant measure (using weak* compactness of the space of invari-
ant measures), and secondly that this limit measure is absolutely continuous (using the bounded
distortion condition).

Returning now to the case of the inducing scheme TA, we are hoping to show that it is a FBEM so
that this theorem may apply. The hardest part here will be the bounded distortion condition; to
tackle it, proving that the “Adler condition” D2 applies will be a good choice, since this condition
is fairly robust under iterates, and TA is defined through iterates of Tα. We will work through
the proof of this in more detail than is usually given when checking this sort of condition in the
literature. Because we are expecting polynomial rather than exponential decay, the bounds we have
to establish in order to verify the condition are quite tight, and we will need to follow orbits very
closely to achieve this.

Lemma 3.4. TA is a FBEM.

Proof. The following proof is mostly an exercise in basic analysis and algebraic manipulation, but
demonstrates the sort of argument that may in general need to be provided in order to show that
a given map is indeed a FBEM. However, note that the exact bounds used in the latter part of the
proof are specific to this map TA.

Begin by partitioning A by return time. For n ≥ 0 let

An = {x ∈ A | R(x) = n+ 1}.
1Saying that a sequence of measures converges weak* to another measure means that for any continuous function

ϕ, the sequence of integrals of ϕ with respect to each measure converges to the integral of ϕ with respect to the limit
measure.
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We can show that
A0 = [3/4, 1], An = T−1

α In ∩ [1/2, 1] ∀n ≥ 0,

which shows that this is a partition into intervals. Similarly to the Markov partition in the previous
section, the endpoints here are another sequence of pre-images of the point 1, namely

an = v−1(xn)

for each n ≥ 0. Then, our partition intervals are

An = [an+1, an)

for n ≥ 0 (with a closed interval in the case n = 0 only).

Thinking about the first few steps of the orbit of x ∈ An through the transition graph in Figure 3.3,
we also find that on An, we have TA(x) = un(v(x)). This is continuous, and at the endpoints of
An we have:

TA(an+1) = un(xn+1) = 1/2

lim
x→a−n

TA(x) = lim
x→x−n

un(x) = 1

So this map is indeed full-branched on [1/2, 1]. A numerical plot is given below; each An is the
domain of the (n+ 1)th branch from the right.

P

0.5 0.75 1
0.5

0.75

1

Figure 3.4: The induced map TA for α = 3/4.

The final condition from the definition is also easy to show. Note that T ′α(x) ≥ 1 everywhere, and
TA always begins with an application of v, so iterating the chain rule gives that T ′A is a product of
v′ with some number of T ′α. But v′ = 2, so picking γ = 2 works. This is also evident from the plot
above.

Now we need to prove bounded distortion and we will do this using the Adler condition. For any
function f , let Adl(f) := |f ′′/(f ′)2|, so that we are trying to bound the function Adl(TA) on A.

The idea is to find an expression for Adl(Tnα ) for each n, since taking powers of the original map
is how we get TA. The approach that gives Adl(fn) for any n is given, for example, in the proof of
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[Coa20, Theorem A], although it’s done there for a different map. The trick is to repeatedly apply
the chain rule and the triangle inequality to get that in our case, for any n ≥ 0,

Adl(Tnα ) ≤ |Adl(Tα) ◦ Tn−1
α |+

n−1∑
k=1

∣∣∣∣Adl(Tα) ◦ T k−1
α

(Tn−kα )′ ◦ T kα

∣∣∣∣ .
This will appear in the bound we are about to establish. In preparation, we should find bounds
for Adl(Tα) and (T lα)′ on each Markov interval In. For every n ≥ 1, we have T |In = u, and we can
compute derivatives:

u(x) = x(1 + 2αxα)

u′(x) = 1 + (1 + α)2αxα

u′′(x) = α(1 + α)2αxα−1

Remember that throughout this section we assumed α ∈ (0, 1), so u, u′ are increasing while u′′ is
decreasing. All functions are positive. So on In, we can bound these derivatives using the values of
u′, u′′ at the endpoints xn+1 and xn of the interval. This is straightforward for Adl(Tα) and gives
us:

sup
In

Adl(Tα) ≤
supIn |u

′′|
infIn |u′|2

≤ u′′(xn+1)

u′(xn)2
≤ α(α+ 1)2αxα−1

n+1. (3.2)

To bound (T lα)′ from below, we iterate the chain rule. Let x ∈ In. We are only interested in the
case n = l, since this is what will arise when considering the induced map TA; so assume n = l.

(T lα)′(x) = (ul)′(x)

= u′( x︸︷︷︸
∈In

) · u′(u(x)︸︷︷︸
∈In−1

) · u′(u2(x)︸ ︷︷ ︸
∈In−2

) · · · · · u′(ul−1(x)︸ ︷︷ ︸
∈In−l+1

)

≥ u′(xl+1) · u′(xl) · u′(xl−1) · · · · · u′(x2) (since n = l)

= (1 + (1 + α)2αxα2 )(1 + (1 + α)2αxα3 ) . . . (1 + (1 + α)2αxαl+1).

Denote this product by tl+1, so that we get

inf
Il

(T lα)′ ≥ tl+1. (3.3)

We are now ready to compute Adl(TA). Suppose x ∈ A has return time n+ 1, so that x ∈ An. If
n = 0, then TA(x) = v(x) = 2x − 1 and so Adl(TA)(x) = 0. Turning to the case n ≥ 1, we recall
from above that TA(x) = Tn+1

α (x) = un(v(x)) = Tnα (v(x)). So,

Adl(TA)(x) =

∣∣∣∣ (Tnα ◦ v)′′(x)

(Tnα ◦ v)′(x)2

∣∣∣∣
=

∣∣∣∣∣����
v′(x)2 · (Tnα )′′(v(x))

����
v′(x)2 · (Tnα )′(v(x))2

∣∣∣∣∣ (by chain and product rules and since v′′ = 0)

= Adl(Tnα )(v(x))

≤ |Adl(Tα)(Tn−1
α (v(x)))|+

n−1∑
k=1

∣∣∣∣Adl(Tα)(T k−1
α (v(x)))

(Tn−kα )′(T kα(v(x)))

∣∣∣∣ .
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Since the induced map and its derivatives are all positive, we can drop the absolute values.

At this point, notice that we are applying functions to points of the form T lα(v(x)) for some l. But
x ∈ An =⇒ v(x) ∈ In =⇒ T lα(v(x)) ∈ In−l, so applying our estimates in (3.2) and (3.3), this
yields:

Adl(TA)(x) ≤ sup
I1

Adl(Tα) +

n−1∑
k=1

supIn−k+1
Adl(Tα)

infIn−k(Tn−kα )′

≤ α(α+ 1)2αxα−1
2 +

n−1∑
k=1

α(α+ 1)2αxα−1
n−k+2

tn−k+1

≤ α(α+ 1)2αxα−1
2 +

n∑
k=2

α(α+ 1)2αxα−1
k+1

tk
(relabelling n− k + 1→ k)

Many terms in this bound are independent of n. Filtering these out, to show that Adl(Tα) is
bounded uniformly on every interval An, it suffices to show that the series

∞∑
k=2

xα−1
k+1

tk

converges.

We will analyse the asymptotics of the kth term of the series by taking logarithms. We will also use
the estimates for xk given in Equation 3.1. In this next calculation, we write ak ≈ bk if the sequence
|ak − bk| is bounded (since we are working with logs, this corresponds to the original sequences
differing by a multiplicative constant).

ln(xα−1
k+1/tk) = ln(xα−1

k+1 )− ln(tk)

= (α− 1) ln(xk+1)−
k∑
i=2

ln(1 + (1 + α)2αxαi )

≈ (α− 1) ln(xk+1)−
k∑
i=2

(1 + α)2αxαi

(using the approximation for ln(1 + x) as x for small x2)

≈ (α− 1) ln((α− 1)2a(k + 2)−1/α)−
k∑
i=2

(1 + α)2α((α2α(i+ 1))−1/α)α (using (3.1))

≈ 1− α
α

ln(k + 2)− 1 + α

α

k∑
i=2

1

i+ 1︸ ︷︷ ︸
sum of reciprocals ∼ ln(k + 2)

∼ −2 ln(k + 2).

Taking exponentials of both sides, we conclude that our series is bounded above by a constant
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multiple of
∞∑
k=2

1

k2
,

which is convergent. Hence, there is some C <∞ such that

Adl(TA) < C,

and this verifies the bounded distortion condition.

Combining Lemma 3.4 and Theorem 3.3, we conclude that TA has an acip which we will denote
µα, and furthermore µα is the weak* limit of a subsequence (µα,nk)k of:

µα,n :=
1

n

n−1∑
j=0

(T jA)∗λ.

Furthermore, recalling Proposition 2.9, we find that the original Manneville-Pomeau map Tα has
an invariant measure which we will call να, and this measure is given by the “pushing” method in
(2.3) (but note that indexing is different and we have pre-computed return times):

∀E ∈ B : να(E) =
∞∑
j=0

j∑
k=0

µα(T−kα (E) ∩Aj). (3.4)

We also get from this proposition that the pushed measure is absolutely continuous with respect
to λ, i.e. να � λ.

We claimed at the beginning of this section that finding an invariant probability measure is prefer-
able. Again by Proposition 2.9, we know that certainly να is σ-finite (at least when 0 < α < 1
which we have assumed throughout); the condition for finiteness isˆ

A
Rdµα <∞.

Proposition 3.5. The Manneville-Pomeau map Tα has an acip for any α ∈ (0, 1).

Proof. The above derivations gave an invariant, absolutely continuous invariant measure να for Tα
which we now wish to normalise to get a probability measure, which will then be an acip.

This can be done provided να is finite, which we said above is equivalent to the conditionˆ
A
Rdµα <∞,

where µα is the invariant measure of the induced map.

However, we do not currently have a way of integrating against µα. We have established the
existence of this measure in Lemma 3.4, and the only other thing we know is that it is the limit of
a subsequence (µα,nk)k of:

µα,n :=
1

n

n−1∑
j=0

(T jA)∗λ.

2Some thought is necessary to justify that summing k approximations of ln(1+x) will be a uniform constant away
from the sum of the x as k →∞. The error in the approximation has order x2, and the terms we are plugging in are
x = xi which behave like i−1/α, so the sum of the errors is a convergent series.
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This expression as a limit will actually be enough to prove that the integral of the return time is
finite, and we will do this by showing that integrating with respect to µα is not so different from
integrating with respect to λ. More precisely, we will show that there exists a constant D such that

∀E ∈ B|[1/2,1] : µα(E) ≤ D · λ(E),

which will give us the following bound:

ˆ
A
Rdµα ≤ D

ˆ
A
Rdλ.

Using the fact that TA is a FBEM by Lemma 3.4, we consider the base partition P := {A0, A1, . . . },
and then as in the definition, we consider the sets of cylinders Pj :=

∨j−1
i=0 T

−i
A P for each j. Similarly

to what we did in the proof of Lemma 2.12, we can show that the partition Pj breaks down [1/2, 1]

into intervals on which T jA is full-branched, and by the lemma, we know that:

sup
k≥1

sup
Z∈Pk

sup
x,y∈Z

∣∣∣∣(T kA)′(x)

(T kA)′(y)

∣∣∣∣ <∞.
We claim that the constant D we require can be taken to equal this supremum. (We will also need
that D ≥ 1, which is actually guaranteed to be the case for the supremum above; e.g. we can take
x = y).

The proof of this claim is essentially contained in the proof of the Ergodic Folklore Theorem in
[Tod20], but we will replicate the relevant parts here. Note first that it suffices to show that the
bound with D holds for each push-forward measure (T jA)∗λ, since it will then hold in the limit. So,
fix j ≥ 0.

Let E ∈ B|[1/2,1] be an interval; intervals generate the Borel algebra, so proving the bound for every
interval E will prove it for all measurable sets. This way we know that λ(E) is just the distance
between the endpoints of the interval E, which we may write as λ(E) = |E|.

If j = 0 the bound holds trivially. Now suppose j ≥ 1. Then let Z ∈ Pj be arbitrary, and consider

the interval T−jA E∩Z. Since T jA is increasing and bijective on Z, and T jA(Z) = [1/2, 1], the interval

E must have a preimage inside Z under T jA, and this preimage is precisely T−jA E ∩ Z. So the

endpoints of the interval T−jA E ∩ Z must map to the endpoints of E under T jA, and hence we can

apply the Mean Value Theorem to find a y ∈ T−jA E ∩ Z such that

|(T jA)′(y)| = |E|
|T−jA E ∩ Z|

,

and similarly applying the MVT to T jA(Z) = [1/2, 1] produces x ∈ Z such that

|(T jA)′(x)| = |[1/2, 1]|
|Z|

=
1

2|Z|
.

Now,

|T−jA E ∩ Z|
|Z|

=
|(T jA)′(x)|
|(T jA)′(y)|

· 2|E| ≤ 2D|E|,

Where D is the distortion constant. Hence |T−jA E ∩ Z| ≤ 2D · λ(E)λ(Z).

48



Now if we sum over every Z ∈ Pj we get

(T jA)∗(E) =
∑
Z∈Pj

|T−jA E ∩ Z|

≤ 2D · λ(E)
∑
Z∈Pj

λ(Z)

= 2D · λ(E)λ([1/2, 1])

= D · λ(E).

Now that the bound holds, proving that the measure να is finite boils down to showing
´
ARdλ <∞.

To evaluate this integral, note that R is an integer-valued function and is equal to n precisely on
An−1 for each n ≥ 1. So,

ˆ
A
Rdλ =

∞∑
n=1

ˆ an−1

an

ndλ

=

∞∑
n=0

(an − 1/2) (“summing horizontally rather than vertically”)

=
1

2

∞∑
n=0

xn

=
1

2

∞∑
n=0

(α2α(n+ 1))−1/α(1 +O(n−1)) by (3.1)

≤ α−1/α

4

( ∞∑
n=0

1

(n+ 1)1/α
+
∞∑
n=0

A

(n+ 1)1+1/α

)
for some A� 1

<∞,

since α ∈ (0, 1) =⇒ 1/α > 1, so both series converge.

The work in this section has therefore allowed us to conclude that for α ∈ (0, 1), the map Tα has an
invariant, absolutely continuous, probability measure. We get this measure by taking the invariant
measure να and normalising by dividing by the size of the space να([0, 1]), which we know to be
finite by the proof above. Call this normalised measure ν̄α, so that we have:

ν̄α =
να

να([0, 1])
and ∀E ∈ B : ν̄α(T−1

α E) = ν̄α(E).

Remark 3.6. The proof above relied on the existence of a constant D such that the TA-invariant
measure µα that we obtained in Equation 3.4 satisfies

µα ≤ Dλ.

While we only needed this upper bound, a lower bound can also be obtained with exactly the
same arguments. There is only one inequality in the proof, and it can be reversed by a symmetry
argument: since our distortion constant is

D = sup
k≥1

sup
Z∈Pk

sup
x,y∈Z

∣∣∣∣(T kA)′(x)

(T kA)′(y)

∣∣∣∣ ,
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then by exchanging x and y, we get that

1

D
= inf

k≥1
inf
Z∈Pk

inf
x,y∈Z

∣∣∣∣(T kA)′(x)

(T kA)′(y)

∣∣∣∣ ,
and so in fact:

1

D
λ ≤ µα ≤ Dλ.

This is a sufficient (but not necessary) condition for µα to be equivalent to Lebesgue measure: the
two measures have the same null sets.

3.4 Invariant densities

In the previous section, we searched for an invariant measure for Tα which satisfies the additional
restriction of being absolutely continuous with respect to our reference measure λ (Lebesgue). When
working with finite absolutely continuous measures, the Radon-Nikodym Theorem (Theorem 1.24)
applies, and so each a.c. measure has a derivative (or “density”) with respect to Lebesgue measure.

The goal of this section is to produce graphs for some of these densities. Their properties are
already well-known in the literature, as we will discuss at the end of the section. However, actual
graphs for the purposes of visualisation are difficult to find,3 so this section has arisen from my
desire to link up measures and densities and actually plot the results. Namely, we will derive a
pointwise closed form for the invariant density of Tα.

Keeping notation from the beginning of this chapter, the two densities we will look at now are the
ones corresponding to the two a.c. invariant measures from the previous section: µα for the FBEM
TA, and ν̄α for Tα. Both, we have seen, are finite. We have proven the existence of both of these
invariant measures, but that does not necessarily give us an explicit way of finding their associated
densities.

Conveniently, both of our invariant measures are given as algebraic combinations of measures that
have a known density. Let’s recall the results from the previous section:

1

nk

nk−1∑
j=0

f j∗λ
w∗−→ µα (3.5)

να(E) =
∞∑
j=0

j∑
k=0

µα(T−kα (E) ∩Aj) (3.6)

ν̄α =
να

να([0, 1])
. (3.7)

We start with the density of the TA-invariant measure µα. We noted in Remark 3.6 that this
measure was uniformly bounded above and below by D and 1/D respectively, for some distortion
constant D. So, the same will hold for the density.4

3This is not to say that no-one has been able to create such graphs, but rather that since they are specific to the
parametrisation of the map, it is usually more efficient to prove general properties of the density which give a rough
idea of its graph—in a manner which is also applicable to other parametrisations.

4To a certain extent, a density uniformly bounded above and below is not interesting to study, because often
upper and lower bounds are all we need. Nevertheless we can view finding this density as a means to an end, which
is to study the more interesting ν̄α.
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The sequence converging to the measure is a linear sum of push-forwards (see Definition 1.25)
of Lebesgue measure. Since the density of Lebesgue measure is the constant function 1, and
since taking the push-forward of a measure corresponds to applying the transfer operator to its
density (recall Proposition 1.27), we are actually able to express the density of each element in the
subsequence:

ρα,nk :=
1

nk

nk−1∑
j=0

Lj1, (3.8)

Where L denotes the transfer operator associated with TA and Lebesgue measure. We will further

denote by ρα the density dµα/dλ. Since µα,nk
w∗−→ µα, it would be nice to claim that the convergence

indeed also holds (in some sense—perhaps pointwise) for the densities:

µα,nk
w∗−→ µα =⇒ ρα,nk −→ ρα.

This is not immediately obvious, but it is certainly the case if we assume that the densities converge
pointwise to something :

Lemma 3.7. If ρα,nk converge pointwise to some bounded measurable function, then that function
is ρα.

Proof. Suppose ρα,nk −→ ρ for some measurable ρ. Define a measure µ through its density:
dµ = ρ dλ. Then for any continuous function f ∈ C([1/2, 1]), we have:

ˆ
f dµα,nk =

ˆ
fρα,nk dλ −−−→

k→∞

ˆ
fρ dλ =

ˆ
f dµ

by the Dominated Convergence Theorem, since fρα,nk ≤ f ·D, with f bounded since continuous
on a closed interval (the bound with D comes from the proof of Proposition 3.5).

However, since µα,nk
w∗−→ µα and f continuous, we also have:

ˆ
f dµα,nk −−−→

k→∞

ˆ
f dµα.

Hence, µ and µα agree on integrals of continuous functions, and they are both finite, so they must
be equal (this follows, for example, from Theorem 1.2 in [Bil99]). So the densities are equal, i.e.
ρ = ρα.

To prove that the densities ρα,nk do in fact converge, we can use a well-known theorem on suffi-
ciently nice Markov maps, that implies that better still, the sequence of densities (Ln1)n converges
uniformly to some continuous function ρ. Since TA is a FBEM, we can take the partition P to be a
Markov partition and treat TA as a CMS, since it will in this case satisfy all the niceness properties
necessary for the two systems to be in bijection. Then, we can apply for example [Sar99, Theorem
5] with the potential φ = − log |f ′| to conclude the convergence we need (in fact Sarig shows this
convergence is even exponentially fast). If Ln1→ ρ uniformly, then certainly the nk-averages of the
sequence (equal to ρα,nk) also converge to ρ pointwise, and then we apply Lemma 3.7 to conclude
that

ρα = lim
n
Ln1.
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So, the idea is to iteratively apply the transfer operator to the constant function 1. For large n,
when little evolution is noticed from step to step, we get the following density profile:

P

0.5 0.75 1
0.5

0.75

1

0.5 0.75 1
0

1

2

Figure 3.5: The inducing scheme TA and its associated density ρα, both for α = 0.75.

Despite the build-up of branches near the origin x = 1/2 for TA, the associated invariant density
remains bounded above and below, as predicted.

Remark 3.8. As an interesting heuristic exercise, we can think about why the density ρα is higher
towards 1/2. Its value is determined by the iterates of the transfer operator, and in its pointwise
form, this operator is a sum over pre-images of TA, where summands are divided by the derivative
of TA at each pre-image. This derivative is smaller towards the left-hand side of each branch (this
is visible on the second branch from the right in the plot above, or alternatively, can be shown
directly from the definition of TA).

Armed with an estimate for ρα, we can now express the density of να as a combination of known
functions. This is a basic computation that requires some jumping back and forth between measures
and densities. Let ψα be the Radon-Nikodym density of να, and let E ∈ B|[1/2,1]. We now take L
to denote the transfer operator of Tα, rather than TA, with respect to λ. Then:
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ˆ
E
ψα dλ = µα(E)

=
∞∑
j=0

j∑
k=0

µα(T−kα E ∩Aj)

=

∞∑
j=0

j∑
k=0

ˆ
T−kα E

χAj dµα

=

∞∑
j=0

j∑
k=0

ˆ
χT−kα E · χAj · ρα dλ

=
∞∑
j=0

j∑
k=0

ˆ
χE ◦ T kα · χAj · ρα dλ since χB ◦ f = χf−1B

=
∞∑
j=0

j∑
k=0

ˆ
χE · Lk(χAj · ρα) dλ by properties of the transfer operator

=
∞∑
j=0

j∑
k=0

ˆ
E
Lk(χAj · ρα) dλ

=

ˆ
E

 ∞∑
j=0

j∑
k=0

Lk(χAj · ρα)

 dλ.

Since this holds for all Borel sets E, we have found an explicit expression for the density ψα. This
simplifies further once we consider its pointwise definition, using Proposition 1.28.

ψα(x) =

∞∑
j=0

j∑
k=0

∑
Tkαz=x

χAj (z)ρα(z)

|(T kα)′(z)|

=�

∞∑
j=l

ρα(v−1(u−(j−l)(x)))

(T 1+j−l
α )′(v−1(u−(j−l)(x)))

where x ∈ Il

=

∞∑
i=0

ρα(v−1(u−i(x)))

(T i+1
α )′(v−1(u−i(x)))

relabelling i = j − l.

The last line of this calculation is a simplification that comes from considering orbits carefully.
Suppose x ∈ Il. Fix j and fix k ≤ j; then the characteristic function will cause the innermost
sum to evaluate to all zeros, unless we can find a z ∈ Aj such that T kα(z) = x. Since k ≤ j and
TαAj = Ij by definition, by the Markov structure of the map we have T kαAj = Ij−k+1. So there
exists a z giving non-zero inner sum if and only if l = j − k + 1, and this z is unique if it exists,

since it is equal to z = v−1(u−(j−l)(x)) ∈ T−(j−l+1)
α x.

This formula is a pointwise closed form, and it allows the density ψα to be computed approximately:
the sum is convergent a.e. since we know the integral of ψα is να([0, 1]), which we proved in
Proposition 3.5 is finite.
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Now, we simply normalise to get:

ψ̄α :=
dν̄α
dλ

=
ψα

ν([0, 1])
.

We can estimate this computationally, which gives the following density, plotted next to the map
itself.
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Figure 3.6: The Manneville-Pomeau map Tα and its associated invariant probability density ψ̄α,
both for α = 0.75.

Remark 3.9. The graph suggests that ψ̄α(x) ≥ C > 0 for some constant C, which would imply
that not only ν̄α � λ but also λ � ν̄α, i.e. the two measures are equivalent (have the same null
sets). Rigorously, we might look back at the pointwise expression for ψα and notice that all the
summands are positive, so just singling out the first one:

ψα(x) ≥ ρα(v−1(x))

T ′α(v−1(x))
≥ 1

2D
,

where D was the distortion bound for TA. Dividing through by ν([0, 1]), it holds true that the
density can be bounded from below by a positive constant.

This density is much more interesting, firstly because it actually relates directly to the map we are
studying (rather than the inducing scheme, which is just a necessary step towards understanding
Tα better). It also seems from this estimate that the density is unbounded towards x = 0, and
getting a better understanding of this phenomenon requires more work.

While this could perhaps be done carefully using the pointwise definition we have above, a more
elegant approach is carried out by Liverani, Saussol and Vaienti in [LSV99]. I refer the reader to
section 2 of their paper for the full proof, which is cleaner than what we have done here with the
inducing and pushing technique.

The key difference in Liverani, Saussol and Vaienti’s approach is that they do not use the inducing
scheme at all, instead searching for a fixed point under the transfer operator (referred to in their
paper as P ) of Tα.

The idea in [LSV99] is to find a compact set of continuous functions on [0, 1] which is preserved under
the transfer operator, and then construct a sequence of functions in this set which is invariant in
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the limit (and which must have a convergent subsequence by compactness). The properties shared
by all functions in the compact set are then properties of the invariant density. In their paper, the
properties they manage to extract are that ψ̄α must be locally Lipschitz, and that

ψ̄α(x) = O(x−α)

as x→ 0.

On another note, estimates for the invariant densities of more general maps with indifferent fixed
points have been known for some time; see for example [Tha80].

3.5 Interpretation

Now that we have an invariant measure for Tα (and a plot of its density with respect to Lebesgue
measure), we can reap the benefits. At the most basic level, for example, Poincaré’s Recurrence
Theorem (Theorem 1.11) applies and we conclude that any set of positive Lebesgue measure is
visited infinitely often by the orbit of λ-almost every x ∈ [0, 1]. (We have made the leap from ν̄α
to λ using equivalence, which we noted in Remark 3.9).

But we can do much better. Additional interpretation abilities become available if we can prove
that ν̄α is not only invariant, but also ergodic. We can do this in a number of ways, but the route
of least effort is to use the Young tower technology we have already accumulated. So, it is time to
properly link up the Manneville-Pomeau map Tα with our work in section 2.1.

Lemma 3.10. Let I = [0, 1]. The map Tα on (I,B, λ) admits a Young tower representation (in the
sense of Definition 2.3) with base set A = [1/2, 1] and with the return time partition {An}n=0,1,....

Proof. Clearly the iterates of A cover the whole space since Tα(A) = I, and each of the countably
many partition elements Ai has finite return time i + 1. Since Tα is bounded and piecewise con-
tinuous, and each positive-measure subinterval of I has a positive-measure preimage under Tα, the
map is also nonsingular. Furthermore, the induced map TA := TRAα is full-branched and bijective
on each branch (we’ve already seen that TA is a FBEM).

We now just need to prove that Young’s conditions Y1–Y5 apply. Showing measurability and
strong generation are not interesting exercises, but in the case of a relatively nice interval map like
Tα, they certainly hold. Aperiodicity (Y3) follows from the fact that every return time is possible
on A. As for finiteness of the return time integral (Y5), this was the final calculation in the proof
of Proposition 3.5.

The last thing to check is the distortion condition Y4 on TA. We have already spent quite some
time in this chapter proving another distortion condition on TA—namely, Adler’s condition D2.
For the sake of time and sanity we will consider Young’s condition to be similar enough that an
analogous calculation will bring us close.

Now that we can place ourselves in the setting of Young’s paper [You99], we can use its powerful
theorems. Call (∆, F ) the Young tower obtained from Tα, and take the notation of section 2.1.
Namely, we will once again abuse notation and consider λ to be a measure on the tower obtained
by carrying Lebesgue measure up from A = [1/2, 1].

Proposition 3.11. The Tα-invariant probability measure ν̄α is ergodic.
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Proof. A result in [You99, Theorem 1] guarantees the existence of an ergodic probability measure
ν for F . In Young’s proof of Theorem 1, ν is obtained using exactly the pushing formula (2.1)
followed by normalisation, and the measure getting pushed has density equal to the limit of ρα,nk
from Equation 3.8. We noted at the end of subsection 2.1.5 that this means that the pushing
method we used here, and the one used by Young, are in fact equivalent, and so we should have
ν̄α = ν ◦ π−1

∆ .

For ergodicity, then, suppose T−1
α E = E for some E ∈ B. Then π−1

∆ T−1
α E = π−1

∆ E. By the
conjugation properties of the projection π∆ (see Proposition 2.8), this implies F−1(π−1

∆ E) = π−1
∆ E.

Since ν is ergodic, we have either ν(π−1
∆ E) = 0 or ν(π−1

∆ E) = 1, i.e. ν̄α(E) is either 0 or 1.

This is an ideal setting: we have an ergodic probability measure equivalent to Lebesgue measure.
Birkhoff’s Ergodic Theorem will allow us to convert between time averages and space averages; one
basic application of this is as follows.

Corollary 3.12. Let E be a measurable subset of the interval. For λ-almost every x ∈ I, the
limiting proportion of time that the orbit of x under Tα spends in E is

´
E ψ̄α(x) dx.

Proof. The limiting proportion we want is

lim
n→∞

1

n

n−1∑
k=0

χE(T kα(x)),

which by Birkhoff’s Ergodic Theorem (Theorem 1.14) is equal to
´
χE dν̄α. Convert to Lebesgue

measure using the Radon-Nikodym derivative ψ̄α to conclude.

Broadly, this means that the density ψ̄α (with graph given in Figure 3.6) shows how “attractive”
different parts of the space I are to orbits: the higher the density, the more attractive the area.5

We conclude from the singularity near x = 0 that something about the dynamics of Tα is creating
a build-up of orbits near the origin. For comparison, the invariant density for the doubling map
α = 0 is easily checked to be the uniform density 1, so the indifferent fixed point has indeed had
an effect on the dynamics.

3.6 Decay of correlations

The final ergodic question about Tα that we will seek to answer is about decay of correlations. This
question emerges as a finer, and stronger, version of the mixing properties of dynamical systems
(recall the definition of mixing from Definition 1.15). Mixing and its generalisations are phrased
in terms of an ergodic probability measure, so our work in previous sections finding ν̄α has been
necessary to get to this point. We will only briefly discuss a few results here, to show the techniques
involved and the historical progression on the bounds. All of the results in this section are taken
from recent papers and talks and credited as such, apart from Proposition 3.16 where we have to
do some of our own work to reconcile (I, Tα) with its Young tower representation. A good historical
overview of the progress made on the question of decay of correlations for the Manneville-Pomeau
map is available in [Bal00, Section 3.5], but it does not contain the two most recent advances made
since its publication by Sarig then Gouëzel (Proposition 3.18 and Proposition 3.19 respectively).

5Quite the opposite of the modern “urban flight” phenomenon.
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Let (X, E , µ, T ) be an ergodic ppt. Mixing is a statement about iterates of sets becoming indepen-
dent of one another. But rather than thinking about mixing as a statement on sets:

µ(A ∩ T−nB) −→ µ(A)µ(B),

we can think about this same problem as a statement on characteristic functions:

ˆ
χB · χA ◦ Tn dµ −→

ˆ
χA dµ

ˆ
χB dµ.

The natural question to ask now is whether we can replace χA and χB with arbitrary functions
in some function space, and the answer is yes if the function space is L2 (and this is in fact an
alternative formulation of strong mixing). If we consider these functions to be random variables
on a probability space, this becomes a statement about the independence of stochastic random
variables defined by the dynamics T .

Definition 3.13. Let (X, E , µ, T ) be an ergodic ppt and let f, g ∈ L2. Then the nth correlation of
f and g under T is

Cor(f, g ◦ Tn) =

ˆ
f · g ◦ Tn dµ−

ˆ
f dµ

ˆ
g dµ.

Note that the integrals are taken with respect to the invariant measure, rather than the reference
measure (e.g. λ or m)! If the invariant measure is ever unclear, we can specify on the correlation
function using subscripts, e.g. Corµ.

If we have a strongly mixing system, then it is clear that Cor(f, g ◦ Tn) converges to 0. The finer
question is then to determine the asymptotic speed at which this happens (in terms of n). We refer
to this as decay of correlations or the rate of mixing.

For f and g in L2, the rather unsatisfactory answer to this question is that nothing much can be
said at all. Gouëzel in [Gou21] provides the following nice counterexample for the doubling map
using Fourier series:

Proposition 3.14. Let T be the doubling map on [0, 1] and let (an)n be a sequence of real numbers
such that

∑
n |an|2 <∞. Then there exist f, g ∈ L2(R) such that ∀n ∈ N : Cor(f, g ◦ Tn) = an (i.e.

we can get functions whose correlations decay however we like, so long as they do decay).

Proof. Take g(x) = cos 2πx and f(x) =
∑

k 2ak cos(2π2kx). Then
´
f
´
g = 0, and

ˆ
f · g ◦ Tn dλ = 2an

ˆ 1

0
cos(2π2nx)2 dx = an.

The doubling map being a chaotic FBEM, where we expect things to happen exponentially, this
serves as a warning that L2 is not restrictive enough. Hence, questions about decay of correlations
usually treat a subset of L2, often with a smoothness assumption such as Lipschitz continuity or
differentiability.

Let’s now return to our familiar example (I,B, ν̄α, Tα). Our first upper bound for decay of corre-
lations comes from the paper that we have used as the definition of our parametrisation of Tα:
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Proposition 3.15 ([LSV99]). Let α ∈ (0, 1). Then for f ∈ C([0, 1]) and g ∈ L∞, we have

|Cor(f, g ◦ Tnα )| = O(n1−1/α(log n)1/α).

The approach to arrive at this bound is to introduce a random perturbation to the system, and
this seems to be what generates the additional log term.

Using Young’s method, a tighter bound is obtained, and this follows from the same paper we have
been frequently quoting. This is for functions f : ∆ → R rather than f : [0, 1] → R, but to a
certain extent this does not matter. This is because recalling the Young tower projection from
Definition 2.7, we can convert functions f on [0, 1] into functions on ∆ by setting e.g. f∆(x) =
f(π∆(x)). Of course, we would then need to check that f∆ was is member of Young’s function
spaces on the tower, and finally we would have to convert the conclusion back into a statement
about the integrals of the functions on [0, 1].

Proposition 3.16. Let α ∈ (0, 1). Let (∆, F ) be the Young tower representation of (I,B, ν̄α, Tα).
Then for f ∈ Cβ(∆)6and g ∈ L∞(∆, λ), we have

|Cor(f, g ◦ Fn)| = O(n1−1/α).

Proof. We already know that the Manneville-Pomeau map admits a Young tower representation
in the sense of Definition 2.3, since we showed this in Lemma 3.10. The idea is therefore to apply
[You99, Theorem 3], for which we need that τn = O(n−ω) for some ω > 0. This ω will give us the
rate of mixing.

Young’s paper provides a formula for the size of the tails that we can work with:

τn =
∑
l>n

λ(∆l) = λ(∪l>n∆l).
7 (3.9)

This may be a good time to draw the Young tower obtained from Tα by inducing on A = [1/2, 1].
Remember that we have partitioned A into An = [an+1, an) with return time n+1 (see the proof of
Lemma 3.4, namely Figure 3.4, where each An is the domain of one of the branches of the induced
map). We have that an → 1/2, and we extend out the base so that each An has the same size for
readability (in reality these sets get smaller as n→∞).

6The set Cβ(∆) is a space of functions defined in Young’s paper with a tower-specific Hölder condition attached.
7Note that although decay of correlations is phrased with respect to an ergodic probability measure, Young’s

condition applies to the size of the tails with respect to the reference measure (λ in this case).
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Figure 3.7: The Young tower for the Manneville-Pomeau map, with a tail marked.8

From (3.9) we obtain that the tail τn is just the measure of the triangle made up of all levels greater
than n (for n = 2 this is the red triangle in the figure). Summing the measures row by row, each
level has measure al−1/2. The following calculation is quite similar to the proof of Proposition 3.5.

τn =
∑
l>n

(al − 1/2)

∼
∑
l>n

xl

∼
∑
l>n

l−1/α

=

∞∑
l=n+1

ˆ l+1

l
l−1/α dt (forcing an integral to appear)

∼
∞∑

l=n+1

ˆ l+1

l
t−1/α dt

=

ˆ ∞
n+1

t−1/α dt

∼ n1−1/α (by basic calculus (since α 6= 1))

= O(n−ω),

Where ω = 1/α − 1.9 Since we are assuming α ∈ (0, 1), ω is positive, and so Young’s Theorem 3
applies, and this implies exactly the asymptotics we were looking for.

8The tail τn denotes the measure of the set of all points that have hitting time greater than n, and Young’s formula
says that this measure is equal to that of a triangle at the top of the tower (for n = 2, the red triangle in the figure).
However, the sets are not equal, since points with high hitting time are located near the base, not the top, of the
tower. The reason the two sets have the same measure is because we got the red one by shifting the points with high
hitting time up to the top of the tower (and this doesn’t change the measure since λ is lifted up the columns).

9The “ω” is referred to as “α” in Young’s paper, but that letter was already used here for our parameter.
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Remark 3.17. Theorem 4 in [You99] is also highly sensitive to the size of tails τn. Under the right
conditions, it implies that the Central Limit Theorem (CLT) applies, i.e. for a (measure-theoretic)
random variable ϕ : ∆→ R with integral 0, the sum 1√

n

∑n−1
i=0 ϕ ◦ F i converges in law to a normal

distribution centred at 0. However, the condition for this is τn = O(n−ω) for some ω > 1 (rather
than ω > 0). In the case of the Manneville-Pomeau map, this means we can only show that the
CLT holds for α ∈ (0, 1/2). For larger α and bad enough observables, (namely, observables that
are non-zero at 0), the limiting distribution becomes a weaker statistical law called an α-stable law
(see, for example, [MZ15]). The reason for this (at least if ϕ(0) 6= 0) is that an orbit entering a
small neighbourhood of 0 stays there for many more iterations of Tα, and so in the sum of ϕ◦T iα(x),
very similar non-zero values ϕ(z) for |z| � 1 appear multiple times in a row, creating a large jump
in the value of the sum. This can be studied using piling processes (see [FFT20]).

Returning now to decay of correlations, we have found function spaces in which the decay for Tα is
polynomial of order 1−1/α. This is already in stark contrast with the doubling map, our canonical
example of chaos, where Lebesgue measure is ergodic and decay (at least for C∞ functions) is
superexponential, i.e. faster than εn for any ε > 0 (a proof was given in [Gou21], once again using
Fourier series). However, all we have currently is an upper bound for decay of correlations for Tα:
it could be that this is a bad upper bound, and actually decay is exponential for the Manneville-
Pomeau map too.

In 2002, Sarig showed that the bound from Young’s paper is indeed optimal, i.e. we can find
reasonable functions whose correlations decay exactly at the speed given in Proposition 3.16. The
proof of this result uses renewal theory, a functional analysis approach where rather than using
transfer operators (Definition 1.26), we use restrictions of transfer operators to sets of significance
in inducing schemes. This fits in nicely with Markov maps. Sarig’s result then finds the asymptotics
of the correlation function in terms of the sequence ν̄α({x ∈ A : R(x) > n}). (Note that this is
related to the size of the tails τn in Young’s model.)

Proposition 3.18 ([Sar02]). Let α ∈ (0, 1/2). Then for f Lipschitz and g bounded measurable, we
have

|Cor(f, g ◦ Tnα )| = Θ(n1−1/α).

This was improved shortly afterwards by Gouëzel, who extended the valid range for α to the full
interval we have been looking at:

Proposition 3.19 ([Gou04]). Let α ∈ (0, 1). Then for f Lipschitz and g bounded measurable, we
have

|Cor(f, g ◦ Tnα )| = Θ(n1−1/α).

So we can indeed find fairly large classes of functions whose correlations, under the Manneville-
Pomeau map, decay only exponentially: this is comparatively slow. Thinking back to Pomeau and
Manneville’s quotes in section 1.6, it had been observed that the “bursting region” of the map was
where correlations are broken. Informally, we might conclude that correlations decay more slowly
with an indifferent fixed point because along laminar portions of orbits (i.e. those passing near
x = 0), the dynamics are not expanding enough to allow for fast mixing. Hence, all the mixing has
to happen in the areas of the map with higher derivative. As the tangency is stronger for higher
choices of α, this is also consistent with the asymptotic speed n1−1/α being slower for larger α.
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Conclusion

We stated at the beginning of this project that we were looking to observe and study intermittency
in dynamical systems. While the Manneville-Pomeau map is one example amongst many, it seems
to have served us well. Let’s recap what we have established about this specific map Tα.

Firstly, we defined intermittency to be the alternation of laminar flow and chaotic bursts. The
representation of Tα as a renewal shift seems to embody this well, with the return toward the renewal
state 0 being inevitable and laminar, while the state mapped to after visiting 0 remains completely
unpredictable. However, we noted that this alone was not enough to claim that intermittency
was present, and we considered the relative sizes (in Lebesgue measure) of the Markov partition
elements to conclude that they decay polynomially rather than exponentially. This means that
picking a point in [1/2, 1] uniformly at random gives a higher expected return time for Tα than it
does for the doubling map; entering into a laminar phase is somehow more likely.

The tangency at the origin is to blame for this, as orbits arriving near x = 0 are then “captured”
there for a while, in the sense that applying Tα to a small value of x barely increases it at all.
We need many iterations of Tα to escape the slow, laminar area: here again we echo Pomeau and
Manneville’s words from section 1.6. This capture of orbits is also reflected in the system’s invariant
density, with a singularity at the origin.

On a more technical level, we can also make similar “exponential versus polynomial” statements
about the system’s decay of correlations, which are once again comparatively slow since they are
also polynomial. This has a number of applications, from stochastic processes generated from
dynamical systems to more basic questions about how quickly orbits move apart. Studying decay
of correlations remains fashionable (notice that the results in the last section are comparatively
recent), especially using modern methods such as transfer operators.

One of the limitations of studying the Manneville-Pomeau map in depth in this project, however,
is that we might somewhat lack perspective coming out the other end. Many of the calculations
we carried out in the third chapter were very specific to this map, and even to this parametrisation
(by Liverani, Saussol and Vaienti). Nevertheless, the methods we used were not. In the process of
proving results for Tα, we applied knowledge of both Young towers and countable Markov shifts,
and I should stress again that these techniques are incredibly valuable in many scenarios: not just
for Tα, and not even just for intermittent systems. They appear often in the literature and I hope
that reading through this project may have provided an adequate warm-up for some more technical
reading.

Despite some of the work being parametrisation-specific, much of what we did holds more generally
for non-uniformly expanding maps with a neutral fixed point at the origin. Indeed, in some papers
such as [Iso95], the situation is treated in more generality, and when given a specific map, it can
be plugged into the derived formulae.

61



In fact, there are certainly many other maps (and even other interval maps) that are also intermit-
tent, but for different reasons. One good example is unimodal maps, which it is shown in [Zwe04]
have similar properties to the intermittent system we have studied here.

For an interested reader wanting to learn more about intermittency or ergodic theory in general,
there are plenty of places to go. A common extension of the search for an a.c. invariant measure
is thermodynamic formalism: we mentioned this briefly at the end of section 1.4, and pointed
to [Sar99] as a good introduction for this area since it contains all the important definitions,
and applications to CMS. We also only briefly mentioned limit theorems (in Remark 3.17)—these
warrant a much more in-depth study, especially since finding the distribution of 1√

n

∑n−1
i=0 ϕ◦F i can

be generalised to describing 1√
nt

∑bntc
i=0 ϕ ◦ F i as a function of t in the limit n→∞. This gives rise

to functional limit theorems. Going in another direction, one can introduce holes to a dynamical
system’s state space, for example in such a way that they absorb orbits. We can then study the
set of all points not yet absorbed at iteration number n and find conditional invariant measures for
these sets; for the Manneville-Pomeau map, this is done in [DT17].
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